
Introduction to CVS

Hao-Ran Liu

2002/8/20

2002/8/20 2/31

What is CVS?

CVS stands for Concurrent Versions
System

Tools for Collaborative code
development

Distribute code among developers

Aid to communication (identify changes)

2002/8/20 3/31

What is CVS not?

CVS is not a build system (eg.
Makefile)

CVS is not a substitute for
management

Code merging, branch or release date

CVS is not a substitute for developer
communication

It is only a tool to help you distribute and
identify changes among developers.

2002/8/20 4/31

Basic terminology
Repository

Stores a complete copy of all the files and
directories which are under version control.
Defined by $CVSROOT

Module
A hierarchy of folders and files beginning at any
folder in the hierarchy of the repository

Revision
Version number of a file

Tag
Give symbolic revision to a set of files

2002/8/20 5/31

CVS Overview

source tree in central place
environment variable CVSROOT

users make copy of (parts of) this tree
creates subdir CVS/ in each node of tree

users refresh their copy of the tree

changes are made to local copy

then merged into repository

no locking!

2002/8/20 6/31

Client-server architecture
• separate server (UNIX or NT)

• no shared filesystems

• a server process per
connection

CVS server

2002/8/20 7/31

The CVS Repository
server:/data1/cvsroot

CVSROOT shr project1 project2 project3 devkits

ar cgi doc install reports util web

cgipr esapps formsunix nt

• Resides on a server
• No working files inside the repository

2002/8/20 8/31

CVS Usage Model
Checkout, Commit, Update

Checkout
Make private copy in working directory
Can check out anywhere
Check out multiple copies, multiple versions

Commit
Commit changes to the repository when finished
Working copies must be up to date with repository

Update
Bring working copy up to date with repository
Merge repository changes (if any) since last check out to
local copy.

2002/8/20 9/31

Concurrent checkout
Master Repository

foo.c

Working
Copy
V1.7

Working
Copy
V1.1

Working
Copy
V1.2

Working
Copy
V1.7

Working
Copy

V1.2.2.1

checkout branch rel_1_fixcheckout la
test

checkout latest

checkout
V1.2

checkout
V1.1Karen

Michael Brigid
Patrick

Checkout does not lock
the files in repository

X XV1.8 or 1.9
V1.8 or 1.9

V1.2.2.2

commit

commit
commit

commit prohibited

Chris

2002/8/20 10/31

CVS and the Development
Cycle

1. Check out source files in working directory.

2. Edit source files.

3. Unit test your code.

4. Update working files to merge in changes from other

developers (if necessary).

5. Test again if the sources were merged on step 4.

6. Commit changes.

7. Repeat from step 2 until you have a new release.

8. Tag the release.

9. Submit the module name and release tag for
integration build.

2002/8/20 11/31

Ideal development with CVS
Developer Acheckoutdevelopmentcommitupdate

repository

Developer B

2002/8/20 12/31

Real development with CVS
commit

X

repository

Developer A

Developer B

updateconflict resolutioncommit

conflict

2002/8/20 13/31

When to commit

Commit to mark a working state that you
might want to return to later.

Commit related files in a single operation.
Use a common log message for all the files.

Commit to backup your sources.

Commit to share latest changes with other
developers.

2002/8/20 14/31

Conflict

Conflict happens when CVS cannot
merge differences between local copy
and repository one at cvs update.

Conflict indicates
an overlap in the source text changes

Repository changes are commited by
someone else since prior cvs update

2002/8/20 15/31

Conflict Resolution

Manually merge the difference and
remove conflict markers in source
code.

<<<<<<< MapReader.java
if (l > 0)
continue;

=======
if (l <= 0)
break;

>>>>>>> 1.2

Local version

Repository version

2002/8/20 16/31

Adding files or directories
add a new file (local) to the repository

cvs add io.c, followed by cvs commit [io.c]
others need to cvs update before they see the new file

repository

Developer Acreate io.ccvs addcvs commitcvs update

Developer B

2002/8/20 17/31

Removing files or directories

remove a file:
check status: cvs status io.c, then del io.c

cvs remove io.c, then cvs commit [io.c]

(still in $CVSROOT/dirs/Attic/io.c,v)

cvs add and cvs remove is NEVER
recursive. Adding or removing a
directory requires manual process.

2002/8/20 18/31

Adding a directory to
repository

cvs import – put existing hierarchy of
folders and files into:

the repository to create a new module

a existing module to create a new
subdirectory

cvs import only affect remote
repository

Need cvs update to bring the changes to
local copy.

2002/8/20 19/31

CVS import example
Developer Acvs importcvs update

repository

Developer B

2002/8/20 20/31

Further topic: renaming files
There is no renaming command in CVS
The only way is:

Rename old filename to new filename
cvs remove old filename
cvs add new filename
cvs commit both new and old filename with
message log “Renamed oldname to newname”

Drawback
To access log or retrieve old file, old filename
must be supplied. (hence message log is
important)

2002/8/20 21/31

Further topic: Moving
directories

Not supported in CVS

Manually move whole hierarchy one
by one with cvs add and cvs remove.

2002/8/20 22/31

CVS Operation Diagram

commands

Repository
(server)

User Copy
(client)

add

removeupdate

checkout

commit

import

[directories of rcs files] [directories of text files
with CVS admin.subdirs]

RED change repository
BLUE change user copy

2002/8/20 23/31

Tagging –
Create a snapshot or release on a
repository

cvs tag rel1_1 dir
creates a snapshot called rel1_1
consists of all versions in dir (usually '.')

cvs checkout –r rel_1_1 can reproduce the
snapshot at anytime.

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- rel1_1
1.2*- 1.2 1.2 -1.2*-
1.3 \- 1.3*- 1.3 / 1.3
1.4 \ 1.4 / 1.4

\-1.5*- 1.5
1.6

2002/8/20 24/31

Branching –
multiple lines of development

1.1 1.2 1.3

release_1

cvs tag release_1

cvs up -r rel_1_fix

1.4

release_2

cvs tag release_2

1.2.2.1 1.2.2.2

patch

re
l_

1_
fixcvs tag -b rel_1_fix

2002/8/20 25/31

Create branch if you need …

to create sustaining (patch) releases
to have multiple development lines
from a single repository
to do experimental development to
merge later or forget about it
to keep temporary state of
development without affecting builds
ultimately: merge back

2002/8/20 26/31

Reserved Checkouts and
CVS

advisory locks: implemented via cvs
edit and cvs watch. Get notification
when someone edits or commits the
file.

exclusive locks (RCS style):
implemented via cvs admin. You
cannot commit unless you’ve locked
the file. One lock per file per branch.

Exclusive file locking prevents parallel
development and is not recommended for
plain text files

2002/8/20 27/31

Advisory locks
Developer A

Developer B

CVS server
edit/watch

Editors:

Developer A

Editors:

Developer A
edit

email alert

Developer B

2002/8/20 28/31

Advisory lock commands

cvs watch on (off) files
users must cvs edit file before modifying

cvs watch add (remove)
adds current user to those to be notified

cvs [watchers | editors] file
See who is [watching | editing] file

2002/8/20 29/31

Introduction to WinCVS

WinCVS is a GUI frontend
Sit on top of CVS command-line tool.

Command response is still in text-mode when
you issue a cvs command.
Some command is not available through the
GUI interface, knowing how to issue
command to CVS command-line tool is
sometimes required.

Provide a client view of repository as CVS
does

Will not tell you changes in the repository
until you do a cvs update or cvs query.

2002/8/20 30/31

WinCVS demo time
Configuration
Main screen
Checking out the sources
Viewing source history
Diff
Commit
Update
Tag

2002/8/20 31/31

Reference

Document
Per Cederqvist et al, Version
Management with CVS
Don Harper, WinCVS 1.3 User Guide
WinCVS Daily User Guide

Web Link
http://www.cvshome.org
http://www.cvsgui.org

http://www.cvshome.org/docs/manual/cvs.html
http://www.cvshome.org/docs/manual/cvs.html
http://www.cvsgui.org/winhtml/wincvs11.htm
http://www.computas.com/pub/wincvs-howto/
http://www.cvshome.org/
http://www.cvsgui.org/

	Introduction to CVS
	What is CVS?
	What is CVS not?
	Basic terminology
	CVS Overview
	Client-server architecture
	The CVS Repository
	CVS Usage ModelCheckout, Commit, Update
	Concurrent checkout
	CVS and the Development Cycle
	Ideal development with CVS
	Real development with CVS
	When to commit
	Conflict
	Conflict Resolution
	Adding files or directories
	Removing files or directories
	Adding a directory to repository
	CVS import example
	Further topic: renaming files
	Further topic: Moving directories
	CVS Operation Diagram
	Tagging –Create a snapshot or release on a repository
	Branching –multiple lines of development
	Create branch if you need …
	Reserved Checkouts and CVS
	Advisory locks
	Advisory lock commands
	Introduction to WinCVS
	WinCVS demo time
	Reference

