BB EGHEZ TR

ERAQEMU

—~ WBREHE XML
B e R

Network stack architecture overview

[P protocol

- _ . netif_receive_skb

net_rx_action

virtual network device

network driver

Y ‘/
@@ NIC poll function) (Interrupt handler

NIC

% A Qdisc, #& queue ZEANHEN F NET_TX_SOFTIRQ K E#, HHIg EREERE - REHS
IFF-L 21| B 87 F2 3 net_device_ops) ndo_start_xmit() °

fell. ATH A% B polling 2k interrupt J7 i - interrupt B FUIEAARE T LAsERMCT . BERAL
skbuff 2, PR netif_rx() 7 Fi% - netif_rx() &i#§ & HEA backlog %¢4 NET_RX_SOFTIRQ JZEE

WA E ERE net_device

struct net_device {

char name[IFNAMSIZ]; // 4 & 4 41 eth%d, register_netdev () & 1 2y B+
struct list_head dev_list; /] FE HERE 3 B R 51

unsigned short hard_header_len; // Z K44 header /% 14 bytes (ETH_HLEN)
unsigned int mtu; /] KA MTU % 1500 bytes (ETH_DATA_LEN)
unsigned long tx_queue_len; // queue #5 % packet %, ether_setup() — 1000
unsigned short type; // #&tt ARP JUERERS AL HLFES, W1 ARPHDR_ETHER
unsigned char addr_len; // MAC it EE

unsigned char broadcasttMAX_ADDR_LEN]; // Oxffffffffffff

unsigned char *dev_addr; // MAC address

unsigned int flags; // 4n'F IFF_ prefix

netdev_features_t features;

int watchdog_timeo; // B:A R — ndo_tx_timeout &4

const struct net_device_ops *netdev_ops; / A8/ HERAEB=
const struct header_ops *header_ops; // operation for packet header
struct net_device_stats stats; // st &1

b

/**

* enum net_device_flags - &struct net_device flags

£

* These are the &struct net_device flags, they can be set by drivers, the

* kernel and some can be triggered by userspace. Userspace can query and
* set these flags using userspace utilities but there is also a sysfs

* entry available for all dev flags which can be queried and set. These flags
* are shared for all types of net_devices. The sysfs entries are available

* via /sys/class/net/<dev>/flags. Flags which can be toggled through sysfs

* are annotated below, note that only a few flags can be toggled and some

* other flags are always always preserved from the original net_device flags
* even if you try to set them via sysfs. Flags which are always preserved

* are kept under the flag grouping @IFF_VOLATILE. Flags which are volatile
* are annotated below as such.

£

* You should have a pretty good reason to be extending these flags.

£

* @IFF_UP: interface is up. Can be toggled through sysfs.

* @IFF_BROADCAST: broadcast address valid. Volatile.

* @IFF_DEBUG: turn on debugging. Can be toggled through sysfs.

* @IFF_LOOPBACK: is a loopback net. Volatile.

* @IFF_POINTOPOINT: interface is has p-p link. Volatile.

* @IFF_NOTRAILERS: avoid use of trailers. Can be toggled through sysfs.
* Volatile.

* @IFF_RUNNING: interface RFC2863 OPER_UP. Volatile.

* @IFF_NOARP: no ARP protocol. Can be toggled through sysfs. Volatile.
* @IFF_PROMISC: receive all packets. Can be toggled through sysfs.

* @IFF_ALLMULTTI: receive all multicast packets. Can be toggled through
* sysfs.

* @IFF_MASTER: master of a load balancer. Volatile.

* @IFF_SLAVE: slave of a load balancer. Volatile.

* @IFF_MULTICAST: Supports multicast. Can be toggled through sysfs.

* @IFF_PORTSEL: can set media type. Can be toggled through sysfs.

* @IFF_AUTOMEDIA: auto media select active. Can be toggled through sysfs.
* @IFF_DYNAMIC: dialup device with changing addresses. Can be toggled

* through sysfs.

* @IFF_LOWER_UP: driver signals L1 up. Volatile.

* @IFF_DORMANT: driver signals dormant. Volatile.

* @IFF_ECHO: echo sent packets. Volatile.

*/

enum net_device_flags {
IFF_UP = 1<<0, /* sysfs */
IFF_BROADCAST = 1<<1, /*volatile */
IFF_DEBUG = 1<<2, /* sysfs */
IFF_LOOPBACK = 1<<3, /* volatile */
IFF_POINTOPOINT = 1<<4, /*volatile */
IFF_NOTRAILERS = 1<<5, /* sysfs */
IFF_RUNNING = 1<<6, /* volatile */
IFF_NOARP = 1<<7, /* sysfs */
IFF_PROMISC = 1<<8, /* sysfs */
IFF_ALLMULTI =1<<9, /* sysfs */
IFF_MASTER = 1<<10, /* volatile */
IFF_SLAVE = 1<<11, /* volatile */
IFF_MULTICAST = 1<<12, /* sysfs */
IFF_PORTSEL = 1<<13, /* sysfs */
IFF_AUTOMEDIA = 1<<14, /* sysfs */
IFF_DYNAMIC = 1<<15, /* sysfs */
IFF_LOWER_UP = 1<<16, /* volatile */
IFF_DORMANT = 1<<17, /* volatile */
IFF_ECHO = 1<<18, /* volatile */

b

M¥% % B KA net_device ops

/*
* This structure defines the management hooks for network devices.
* The following hooks can be defined; unless noted otherwise, they are
* optional and can be filled with a null pointer.
&
* int (*ndo_init)(struct net_device *dev);
* This function is called once when network device is registered.
* The network device can use this to any late stage initializaton
* or semantic validattion. It can fail with an error code which will
* be propogated back to register_netdev
* void (*ndo_uninit)(struct net_device *dev);
* This function is called when device is unregistered or when registration
* fails. It is not called if init fails.
* int (*ndo_open)(struct net_device *dev);
* This function is called when network device transistions to the up
* state.
* int (*ndo_stop)(struct net_device *dev);
* This function is called when network device transistions to the down

* state.
* netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
* struct net_device *dev);

Called when a packet needs to be transmitted.

Must return NETDEV_TX_OK , NETDEV_TX_BUSY.

(can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)

Required can not be NULL.

void (*ndo_set_rx_mode)(struct net_device *dev);

This function is called device changes address list filtering.

If driver handles unicast address filtering, it should set

IFF_UNICAST_FLT to its priv_flags.

int (*ndo_set_mac_address)(struct net_device *dev, void *addr);

This function is called when the Media Access Control address

needs to be changed. If this interface is not defined, the

mac address can not be changed.

int (*ndo_validate_addr)(struct net_device *dev);
Test if Media Access Control address is valid for the device.
int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);

Called when a user request an ioctl which can't be handled by

the generic interface code. If not defined ioctl's return

not supported error code.

int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);

Used to set network devices bus interface parameters. This interface

is retained for legacy reason, new devices should use the bus

interface (PCI) for low level management.
int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);

Called when a user wants to change the Maximum Transfer Unit

of a device. If not defined, any request to change MTU will

will return an error.

void (*ndo_tx_timeout)(struct net_device *dev);
Callback uses when the transmitter has not made any progress
for dev->watchdog ticks.

struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);

Called when a user wants to get the network device usage

statistics. Drivers must do one of the following:

1. Define @ndo_get_stats64 to fill in a zero-initialised
rtnl_link_stats64 structure passed by the caller.

2. Define @ndo_get_stats to update a net_device_stats structure
(which should normally be dev->stats) and return a pointer to
it. The structure may be changed asynchronously only if each
field is written atomically.

3. Update dev->stats asynchronously and atomically, and define
neither operation.

¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*/
struct net_device_ops {
int (*ndo_init)(struct net_device *dev);
void (*ndo_uninit)(struct net_device *dev);
int (*ndo_open)(struct net_device *dev);
int (*ndo_stop)(struct net_device *dev);
netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,

struct net_device *dev);

void (*ndo_set_rx_mode)(struct net_device *dev);

int (*ndo_set_mac_address)(struct net_device *dev,
void *addr);
int (*ndo_validate_addr)(struct net_device *dev);
int (*ndo_do_ioctl)(struct net_device *dev,
struct ifreq *ifr, int cmd);
int (*ndo_set_config)(struct net_device *dev,
struct ifmap *map);
int (*ndo_change_mtu)(struct net_device *dev,

int new_mtu);
struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);

b

3t &, skbuff RH B ¥iE

~
*
*

struct sk_buff - socket buffer

@dev: Device we arrived on/are leaving by

@len: Length of actual data

@data_len: Data length stored in separated fragments

@csum: Checksum (must include start/offset pair)

@csum_start: Offset from skb->head where checksumming should start
@csum_offset: Offset from csum_start where checksum should be stored
@ip_summed: Driver fed us an IP checksum, read checksumming description below
@pkt_type: Filled by eth_type_trans(): PACKET_HOST, PACKET_OTHERHOST, ...
@protocol: Packet protocol from driver. Value from eth_type_trans()
@transport_header: Transport layer header

@network_header: Network layer header

@mac_header: Link layer header

@tail: Data tail pointer

@end: End of buffer

@head: Head of buffer

@data: Data head pointer

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

struct sk_buff {

struct net_device *dev;
unsigned int len,
data_len;

_u8 pkt_type:3;
_u8 ip_summed:2;
union {

__wsum csum;

struct {

__ul6 csum_start;
__ul6 csum_offset;
5
b
bel6 protocol;

_ule6 transport_header;

_ul6 network_header;

_ul6 mac_header;
/* These elements must be at the end, see alloc_skb() for details. */
sk_buff data_t tail;
sk _buff data_t end;
unsigned char *head,
*data;

b

/* A. Checksumming of received packets by device.
3k

* CHECKSUM_NONE:

3k
Device failed to checksum this packet e.g. due to lack of capabilities.
The packet contains full (though not verified) checksum in packet but
not in skb->csum. Thus, skb->csum is undefined in this case.

CHECKSUM_UNNECESSARY:

The hardware you're dealing with doesn't calculate the full checksum

(as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
if their checksums are okay. skb->csum is still undefined in this case

though. It is a bad option, but, unfortunately, nowadays most vendors do

this. Apparently with the secret goal to sell you new devices, when you

will add new protocol to your host, f.e. IPv6 8)

sk
3k

sk

3k

sk

3k

sk

3k

sk

3k

sk

3k

sk

3k

* CHECKSUM_UNNECESSARY is applicable to following protocols:

* TCP: IPv6 and IPv4.

* UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
* zero UDP checksum for either IPv4 or IPv6, the networking stack

* may perform further validation in this case.

* GRE: only if the checksum is present in the header.

* SCTP: indicates the CRC in SCTP header has been validated.

3k
sk
3k
sk
3k
sk
3k
sk
3k
sk
3k
sk
3k
sk
3k
sk
3k
sk

skb->csum_level indicates the number of consecutive checksums found in

the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet

and a device is able to verify the checksums for UDP (possibly zero),

GRE (checksum flag is set), and TCP-- skb->csum_level would be set to

two. If the device were only able to verify the UDP checksum and not

GRE, either because it doesn't support GRE checksum of because GRE
checksum is bad, skb->csum_level would be set to zero (TCP checksum is

not considered in this case).

CHECKSUM_COMPLETE:
This is the most generic way. The device supplied checksum of the _whole_
packet as seen by netif_rx() and fills out in skb->csum. Meaning, the

hardware doesn't need to parse L3/L.4 headers to implement this.

Note: Even if device supports only some protocols, but is able to produce

* skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.

sk

* CHECKSUM_PARTIAL:

sk

This is identical to the case for output below. This may occur on a packet
received directly from another Linux OS, e.g., a virtualized Linux kernel

on the same host. The packet can be treated in the same way as
CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
checksum must be filled in by the OS or the hardware.

B. Checksumming on output.
CHECKSUM_NONE:

The skb was already checksummed by the protocol, or a checksum is not
required.

CHECKSUM_PARTIAL:

The device is required to checksum the packet as seen by hard_start_xmit()
from skb->csum_start up to the end, and to record/write the checksum at
offset skb->csum_start + skb->csum_offset.

The device must show its capabilities in dev->features, set up at device
setup time, e.g. netdev_features.h:

NETIF_F HW_CSUM - It's a clever device, it's able to checksum everything.
NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
IPv4. Sigh. Vendors like this way for an unknown reason.
Though, see comment above about CHECKSUM_UNNECESSARY. 8)
NETIF_F IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
NETIF_F_... - Well, you get the picture.

CHECKSUM_UNNECESSARY:

Normally, the device will do per protocol specific checksumming. Protocol
implementations that do not want the NIC to perform the checksum
calculation should use this flag in their outgoing skbs.

NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
offload. Correspondingly, the FCoE protocol driver
stack should use CHECKSUM_UNNECESSARY.

¥ ¥ ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X ¥ F X ¥ ¥ ¥ ¥ ¥ F ¥ ¥ ¥ ¥ X ¥ ¥ *

Any questions? No questions, good. --ANK

* netdev_alloc_skb - allocate an skbuff for rx on a specific device
* @dev: network device to receive on

* @length: length to allocate
£
sk

Allocate a new &sk_buff and assign it a usage count of one. The

* buffer has unspecified headroom built in. Users should allocate

* the headroom they think they need without accounting for the

* built in space. The built in space is used for optimisations.

sk

* %NULL is returned if there is no free memory. Although this function
* allocates memory it can be called from an interrupt.

*/

static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
unsigned int length)
{
return __netdev_alloc_skb(dev, length, GFP_ATOMIC);

}

/*
* It is not allowed to call kfree_skb() or consume_skb() from hardware
* interrupt context or with hardware interrupts being disabled.
* (in_irq() || irgs_disabled())

sk

* We provide four helpers that can be used in following contexts :

sk

* dev_kfree_skb_irq(skb) when caller drops a packet from irq context,

* replacing kfree_skb(skb)

3k

* dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
* Typically used in place of consume_skb(skb) in TX completion path

sk

* dev_kfree_skb_any(skb) when caller doesn't know its current irq context,

* replacing kfree_skb(skb)

3k

* dev_consume_skb_any(skb) when caller doesn't know its current irq context,
* and consumed a packet. Used in place of consume_skb(skb)

*/

/**
* skb_put - add data to a buffer
* @skb: buffer to use
* @len: amount of data to add
sk
* This function extends the used data area of the buffer. If this would
* exceed the total buffer size the kernel will panic. A pointer to the
* first byte of the extra data is returned.
*/

unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
{
unsigned char *tmp = skb_tail_pointer(skb);
SKB_LINEAR_ASSERT(skb);
skb->tail += len;
skb->len +=len;
if (unlikely(skb->tail > skb->end))
skb_over_panic(skb, len, __builtin_return_address(0));
return tmp;

skb_push - add data to the start of a buffer
@skb: buffer to use
@len: amount of data to add

This function extends the used data area of the buffer at the buffer
start. If this would exceed the total buffer headroom the kernel will
panic. A pointer to the first byte of the extra data is returned.

unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
{
skb->data -= len;
skb->len +=len;
if (unlikely(skb->data<skb->head))
skb_under_panic(skb, len, __builtin_return_address(0));
return skb->data;

}
/**
* skb_reserve - adjust headroom
* @skb: buffer to alter
* @len: bytes to move
sk
* Increase the headroom of an empty &sk_buff by reducing the tail
* room. This is only allowed for an empty buffer.
*/

static inline void skb_reserve(struct sk_buff *skb, int len)

{
skb->data += len;
skb->tail += len;

}
/**
* skb_pull - remove data from the start of a buffer
* @skb: buffer to use
* @len: amount of data to remove
3k
* This function removes data from the start of a buffer, returning
* the memory to the headroom. A pointer to the next data in the buffer
* is returned. Once the data has been pulled future pushes will overwrite
* the old data.
*/

unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)

{
return skb_pull_inline(skb, len);

}
/**
* skb_trim - remove end from a buffer
* @skb: buffer to alter
* @len: new length
3k
* Cut the length of a buffer down by removing data from the tail. If
* the buffer is already under the length specified it is not modified.
sk

The skb must be linear.

*/
void skb_trim(struct sk_buff *skb, unsigned int len)

{
if (skb->len > len)
__skb_trim(skb, len);
}
/**

* skb_headroom - bytes at buffer head
* @skb: buffer to check

* Return the number of bytes of free space at the head of an &sk_buff.
*/
static inline unsigned int skb_headroom(const struct sk_buff *skb)
{
return skb->data - skb->head;
}
/**
* skb_tailroom - bytes at buffer end
* @skb: buffer to check

sk

* Return the number of bytes of free space at the tail of an sk_buff
*/

static inline int skb_tailroom(const struct sk_buff *skb)

{

return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;

}

=~ KmERAE (%)
#9722 Ubuntu 14.04.2 64 bit - T EHIFIATER.

linux-3.18.14.tar.xz
busybox-1.23.2.tar.bz2

% 3% Linux kernel & BusyBox

BusyBox } Linux kernel (1 config #% £ #£#: busybox.config, linux.config. {1 &'defconfig'
hn b —28/\e 38 - BusyBox 2% static linking; R E &R+ A A1 kernel module °

MBS EMEES, FEOHZERANEHFEEWHESK T, W% s config - REIEE A H #%
"Nl make oldconfig #E0 R 1%, BRI make f5<%wE

B3I root filesystem

EEBEES T, By —TH#% rootfs o EIT T scripts %% BusyBox, RAUE B AE K kernel
module £ root filesystem # °

./install-busybox-to-rootfs.sh
./install-config-to-rootfs.sh
./install-kmod-to-rootfs.sh

1% FiEM# script # root filesystem #] % rootfs.cpio.gz ° i=EE X4t QEMU fHH -

./pack-rootfs.sh

%% QEMU

PA root #EFR#EAIT start-qgemu.sh
sudo ./start-qemu.sh

JEETE host (BHEEIRIR) ¥mid 7 — tapO EHEAERE /v, HIP f7ik%s 10.0.0.1; T guest (QEMU JE#E
HE8%) SRR AR e A Intel PRO/100 (i82559ER), H IP fizfibA 10.0.0.2 © —{HAERE A/ EB
JEAAHA TR) R S A vian0 o 3 TE host & guest F ping #2482 75 N HE A E -

Linux guest OS

Virtual network device
10.0.0.2

I
host tap0 vian0

10.0.0.1

= ~ Intel 8255x B A& fifi 4~

82557 Network Interface Card Block Diagram

RU-45 L Filter i » 100BASE-T4 or
Module i "I 100BASE-TX PHY
MI|
Optional 9
Flash 3
Intel® 82557
EEPROM |« >
% PCI Local Bus

The 8255x LAN controllers establish a shared memory communication system with the host CPU.
Software controls the device by writing and reading data to and from this shared memory space.
All of the LAN controller functions (configuration, transmitting data, receiving data, etc.) that are
software manageable are controlled through this shared memory space.

The Shared Memory Architecture

The shared memory structure is divided into three parts: the Control/Status Registers (CSR), the
Command Block List (CBL), and the Receive Frame Area (RFA). The CSR physically resides on
the LAN controller and can be accessed by either I/O or memory cycles, while the rest of the
memory structures reside in system (host) memory. The first 8 bytes of the CSR is called the
System Control Block (SCB). The SCB serves as a central communication point for exchanging
control and status information between the host CPU and the 8255x. The host software controls the
state of the Command Unit (CU) and Receive Unit (RU) (for example, active, suspended or idle)
by writing commands to the SCB. The device posts the status of the CU and RU in the SCB Status
word and indicates status changes with an interrupt. The SCB also holds pointers to a linked list of
action commands called the CBL and a linked list of receive resources called the RFA. This type of
structure is shown in the figure below.

8255x Memory Architecture

10/100 Mbps Device (8255x) Registers

System Control
Block (SCB)

Command Block List (System Memory)

» Control Block » Control Block > Control Block

Receive Frame Area (System Memory)

»| Frame Descriptor » Frame Descriptor » Frame Descriptor
Buffer Descriptor #» Buffer Descriptor Buffer Descriptor
Receive Data Receive Data Receive Data
Buffer Buffer Buffer

The CBL consists of a linked list of individual action commands in structures called Command
Blocks (CBs). The CBs contain command parameters and status of the action commands. Action
commands are categorized as follows:

* Non-transmit (non-Tx) commands: This category includes commands such as no operation
(NOP), Configure, IA Setup, Multicast Setup, Dump and Diagnose.
* Transmit (Tx) command: This includes Transmit Command Blocks (TxCB).

The Receive Frame Area (RFA) consists of a list of Receive Frame Descriptors (RFDs) and a list of
user-prepared or NOS provided buffers.

Control / Status Register (CSR)

. Control / Status Register

Upper Word Lower Word Offset
31 16 15 0
SCB Command Word ‘ SCB Status Word Oh
SCB General Pointer 4h
PORT 8h
EEPROM Control Register l Reserved Ch
MDI Control Register 10h
RX DMA Byte Count 14h
PMDR Flow Control Register Reserved 18h
Reserved General Status General Control 1Ch
Reserved 20h-2Ch
Function Event Register 30h
Function Event Mask Register 34h
Function Present State Register 38h
Force Event Register 3Ch

* SCB Command Word. This register is where software writes commands for the CU and RU.

* SCB Status Word. The device places the CU and RU status for the CPU to read in this word.

* SCB General Pointer. The SCB General Pointer points to various data structures in main
memory depending on the current SCB Command word.

* Port Interface. This special interface allows the CPU to reset the device and force it to dump
information to main memory or perform an internal self test.

« EEPROM Control Register. The EEPROM Control Register allows the CPU to read and
write to an external EEPROM.

* MDI Control Register. This register allows the CPU to read and write information from
Physical Layer components through the Management Data Interface.

System Control Block (SCB)

Control commands are issued to the device by writing them into the SCB. This causes the device to
examine the command, clear the lower byte of the SCB command word (indicating command
acceptance), and perform the required action. Control commands perform the following types of
tasks:

* Operate the Command Unit (CU). The SCB controls the CU by specifying the address of the
Command Block List (CBL) and by starting or resuming execution of CBL. commands.

* Operate the Receive Unit (RU). The SCB controls RU frame reception by specifying the
address of the Receive Frame Area (RFA) and by starting, resuming, or aborting frame
reception.

* Load the dump counters address.

e Command the device to dump or dump and reset its internal statistical counters.

* Indicate the cause of the current interrupt(s). In a similar manner, the CPU can send

Interrupt Acknowledgments to the device by writing them into the Interrupt Acknowledge
byte (upper byte of the SCB Status word).

* The device also indicates status to the CPU through bits in the SCB Status word such as CU
status and RU status.

SCB Status Word

SCB Status Word

15 8 7 6 5 2 1 0

STAT / ACK cus RUS 0 0

The SCB Status word is addressable as two bytes. The upper byte is called the STAT/ACK byte,
and the lower, the SCB Status byte. The SCB Status byte indicates the status of the CU and RU.
The STAT/ACK byte reports the device status as bits, which represent the causes of interrupts.
Writing to the STAT/ACK bits will acknowledge pending interrupts. As described below, there are
many different possible interrupt events. The LAN controller asserts the interrupt line to the CPU if
any of these interrupt events need to be serviced. More than one STAT/ACK bits may be set at the
same time. Writing 1 back to a STAT/ACK bit that was set will acknowledge that particular
interrupt bit. The device will de-assert its interrupt line only when all pending interrupt STAT bits
are acknowledged. All pending STAT bits do not need to be acknowledged in a single access, but it
is recommended if the interrupt service routine is likely to process all pending interrupts.

SCB Status Word Bits Descriptions

Bit Symbol Description
This bit indicates that the CU finished executing a command with its interrupt bit
set.

Bit 15 CX/TNO The 82557 includes a TNO feature where the device can be configured to assert

this interrupt when a transmit command is completed with a status of not okay.
The TNO interrupt feature is not available in the 82558 or later devices.

This bit indicates that the RU has finished receiving a frame or the header portion

BT ok of a frame if the device is in header RFD mode.
This bit indicates when the CU has left the active state or has entered the idle state.
There are 2 distinct states of the CU. When the device is configured to generate
Bit 13 CNA CNA interrupt, the interrupt is activated when the CU leaves the active state and

enters either the idle or suspended state. When the device is configured to
generate Cl interrupt, an interrupt will be generated only when the CU enters the
idle state.

This bit indicates when the RU leaves the ready state. The RU may leave the ready
Bit 12 RNR state due to an RU Abort command or because there are no available resources or
if the RU filled an RFD with its suspend bit set.

This bit indicates when an MDI read or write cycle has completed. This interrupt
Bit 11 MDI only occurs if it is enabled through the interrupt enable bit (bit 29) in the MDI
Control Register of the CSR.

This bit is used for software generated interrupts. In some cases, software may

BIH S need to generate an interrupt to re-enter the ISR.

Bit 9 Reserved | This bit is reserved and should not be used.

This bit is used for flow control pause interrupt. It is present in the 82558 and later
Bit 8 FCP devices.
This bit is not used on the 82557 and should be treated as a reserved bit.

SCB Status Word Bits Descriptions

Bit Symbol Description
This field contains the CU status (2 bits). Valid values are for this field are:
00 Idle
Bits 7:6 cus 01 Suspended
10 LPQ Active
11 HQP Active
This field contains the RU status (4 bits). Valid values are:
0000 Idle
0001 Suspended
0010 No resources
0011 Reserved
0100 Ready
0101 Reserved
0110 Reserved
Bits 5:2 RUS 0111 Reserved
1000 Reserved
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved
Bits 1:0 Reserved These bits are reserved and should not be used.

The SCB Status word is not updated immediately in response to SCB commands. For example, the
CU status will remain in the idle state for a period of time after the CU start command is issued.
Software should not rely exclusively on the state of the SCB Status word to determine when it is
appropriate to issue commands requiring the device to be in a specific state. Software may be
required to keep an internal state engine on the commands recently issued to the device to insure
that data read from the register is valid.

SCB Command Word

. SCB Command Word

31

26

25

24

23

20

19

18 16

Specific Interrupt Mask Bits

Sl M

CU Command

RU Command

SCB Command Word Bits Descriptions

Bit

Symbol

Description

Bits 31:26

Specific
Interrupt
Mask Bits

The mask bits range from bit 31 to 26. Writing a 1 to a mask bit disables the 8255x
(except the 82557) from generating an interrupt, or asserting the INTA# pin, due to
that corresponding event. The device may still generate interrupts due to other

interrupt events that are not masked. The corresponding bits and their masks are:

31 - CX Mask

30 - FR Mask

29 - CNA Mask

28 - RNR Mask

27 - ER Mask

26 - FCP Mask
These bits are also described in Section 6.3.2, “System Control Block (SCB)”.
These bits are not present in the 82557 and should be treated as reserved.

Bit 25

Si

This bit is used for the software generated interrupt. Writing a 1 to this bit causes
the device to generate an interrupt, and writing a 0 has no effect. Reads from this
bit always return a zero. The M bit (bit 24) has higher precedence than the Sli bit.
Thus, if a 1 is simultaneously written to both, no interrupts occur.

Bit 24

This bit is used as the interrupt mask bit. When this bit is set to 1, the device does
not assert its INTA# pin (PCI interrupt pin). The M bit has higher precedence than
bits 31 through 26 of this word and the Sl bit (bit 25).

Bits 23:20

cuc

This field contains the CU Command. Valid values for this field are:

0000 NOP. The no operation command does not affect the current state of the
unit.

0001 CU Start. CU Start begins execution of the first command on the CBL. A
pointer to the first CB of the CBL should be placed in the SCB General Pointer
before issuing this command.

NOTE: The CU Start command should only be issued when the CU is in the
idle or suspended states (never when the CU is in the active state) and
all of the previously issued CBs have been processed and completed
by the CU. Sometimes, it is only possible to determine that all CEs are
completed by checking the complete bit in all previously issued
Command Blocks.

0010 CU Resume. The CU Resume command resumes CU operation by
executing the next command. If the CU is Idle, it ignores the CU Resume
command.

0100 Load Dump Counters Address. This command directs the device where to
write dump data when the Dump Statistical Counters or Dump and Reset
Statistical Counters command is used. It must be executed at least once before
the Dump Statistical Counters or Dump and Reset Statistical Counters
command is used. The address of the dump area must be placed in the general
pointer register.

0101 Dump Statistical Counters. This command directs the device to dump its
statistical counters to the area designated by the Load Dump Counters Address
command.

0110 Load CU Base. The internal CU Base Register is loaded with the value in
the SCB General Pointer.

0111 Dump and Reset Statistical Counters. This command directs the device to
first dump its statistical counters to the area designated by the Load Dump
Counters Address command and then to clear these counters.

1010 CU Static Resume. It resumes CU operation by executing the next
command. If the CU is idle, it will ignore the CU Resume command. This
command should be used only when the device CU is in the suspended state
and has no pending CU Resume commands. This command is only valid for the
82558 and later devices. It is not valid for the B2557.

Bit 19

Reserved

This bit is reserved and should be set to O.

Bits 18:16

RUC

This field contains the RU Command. Valid values are:

000 NOP. NOP is a no operation command and does not alter current state of
unit.

001 RU Start. RU Start enables the receive unit. The pointer to the RFA must be
placed in the SCB General Pointer before using this command. The device pre-
fetches the first RFD in preparation of receiving incoming frames that pass its
address filtering.

010 RU Resume. The RU Resume command resumes frame reception (only
when in suspended state).

011 Receive DMA Redirect. This command is only valid for the 82558 and later
devices. The buffers are indicated by an RBD chain, which is pointed to by an
offset stored in the general pointer register (in the RU base).

100 RU Abort. The RU Abort command immediately stops RU receive
operation.

101 Load Header Data Size (HDS). After a load HDS command is issued, the
device expects to only find header RFDs or to be used in Receive DMA mode
until it is reset. This value defines the size of the header portion of the RFDs or
receive buffers. The HDS value is defined by the lower 14 bits of the SCB
General Pointer; thus, bits 15 through 31 should always be set to zeros when
using this command. The value of HDS should be an even non-zero number.

110 Load RU Base. The internal RU Base Register is loaded with the value that
was placed in the SCB General Pointer just before this command was issued.

Transmit Action Command

. Transmit Command Format

Offset Command Word Bits 31:16 Status Word Bits 15:0

00h EL ‘s [l |CID|OOO‘NC |SF |1oo s [x |OK|U ‘xxxxxxxxxxxx

04h Link Address (A31:A0)

08h Transmit Buffer Descriptor Array Address

TBD Number | Transmit Threshold | EOF ‘ 0 | Transmit Command Block Byte Count

Link Address This is the 32-bit address of the next command block. It is added to the CU base to
obtain the actual address.

EL (Bit 31) if this bit is set to one, it indicates that this command block is the last one on the CBL.
The CU will go from the active to the idle state after the execution of the CB is finished.
This transition will always cause an interrupt with the CNAJCI bit set in the SCB.

S (Bit 30) If this bit is set to one, the CU will be suspended after the completion of this CB. A CNA
interrupt will be generated if the device is configured for this. The CU transitions from the
active to the suspended state after the execution of the CB.

I (Bit29) If the | bit is set to one, the device generates an interrupt after the execution of the CB is

CID (Bits 28:24)

Bits 23:21

NC

SF

CMD (Bits 18:16)

C (Bit 15)

OK (Bit 13)

U (Bit 12)

Bits 11:0

TBD Array
Address

TBD Number

finished. If | is not set to one, the CX interrupt will not be generated.

The CMA Interrupt Delay field is only present on B2558 and later ge neration controllers.
(It is not a valid field for the B2557, unless special microcode is downloaded to this
device.) The CID indicates the length of time CMNA interrupts are delayed by the device.

These bits are reserved and should all be set to 0.

0: CRC and Source Address are inserted by the controller. If the “No Source Address
Insertion” (M3Al) bit is set by the configure command, then cnly the CRC is inserted by
the controller. Normally, this bit should be set because it is desirable to have the device
compute and insert the CRC automatically.

1: CRC and Source Address are not inserted by the controller and are assumed to come
from memonry.

This bit indicates whether the device is operating in simplified or flexible mode.

0 = Simplified Mode. All transmit data is in the TCB, and the TBD array address field
must equal all 1s.

1 = Flexible Mode. Data is in the TCB (optional) and in a linked list of the TEDs.
This is the transmit command, which has a value of 100b.

The C bit indicates that the transmit DMA has completed processing the last byte of data
associated with the TCB. This is not the actual completion of the transmit command as
the C bit indicates in other action commands. The actual completion of a transmit
command occurs when the frame is actually sent out on the wire. At the end of actual
transmission, no further status is posted in the TCB, but the transmit statistical counters
are updated.

The OK bit indicates that the command was executed without error. If itequals 1, no error
occurred (command executed OK). If the OK bit is zero and the C bitis set, then an ermor
occurred.

NOTE: For the transmit command, the OK bit is always set when the C bit is set.

The U bit indicates that one or more underruns were encountered by this or previously
transmitted frames since the last TCB status update. Since there is no mechanism for
indicating underruns during or at the end of frame transmission, this bit is set in addition
to the transmit underruns statistical counter for software management purposes.

These bits must be set to all zeros.

In flexible mode, this is a 32-bit address pointing to the first TBD in a contiguous list of
TEDs called the TED array. A TBD is two Dwords, a transmit buffer pointer and buffer
size data. In simplified mode this field should be set by software to a null pointer
(OFFFFFFFFh).

In flexible mode, this represents the number of transmit buffers in the contiguous TBD
array. It should have a one to one comespondence of TBDs and buffers in the array. ifthe
device finds the TBD number equal to 0, it assumes the TEBD array address is a null
pointer and the EOF bit is set. The B2558 and 82559 have a special dynamic TBD mode
that the 82557 does not have. If the dynamic TBD mode is enabled (in the configure
command), software should write a value of FFh into this field. Software should also
mark each TBD as valid or invalid. In the 82557, the TED number is the only indication
that the TBD is the last associated with a particular transmit frame.

Transmit
Threshold

EOF

TCB Byte Count

The transmit threshold defines the number of bytes that should be present in the
controller's transmit FIFO before it starts transmitting the frame. The value is internally
multiplied by 8 to give a granularity of 8 bytes. For example, a value of 1 means the
82557 will start transmitting only when it has 8 bytes in its transmit FIFO. The transmit
threshold should be within a range of 1 to OEOh. (The value OFFh should not be used.)

The EOF bit indicates if the whole frame is in the transmit commmand block. For
consistency, it should be set by software, although it is not checked in simplified or
flexible mode.

For either simplified or flexible mode, the controller is able to transmit data from memory
immediately contiguous to the TCB itself. The amount of data to be read from this space
is determined by the 14-bit TCB byte count. This counter indicates the number of bytes
that will be transmitted from the transmit commmand block, starting with the third byte after
the TCB count field (address N + 10h). The TCB count field can be any number of bytes
up to a maximum of 2600, which allows the user to transmit a frame with a header having
an odd number of bytes. In simplified mode, the TCB byte count indicates the total
number of bytes to be transmitted and should not equal zero. In flexible mode, if the TCB
byte count equals O, then all data is taken from the buffers pointed to by the TBD array.

. Transmit Buffer Descriptor

Odd Word (Bits 31:16) Even Word (Bits 15:0)
Transmit Buffer #0 Address 0
000000000000000 |EL ‘0 ‘Size(ActualCount) 4
Transmit Buffer #1 Address 8
000000000000000 |EL ‘0 ‘Size(ActuaICount) c
Transmit Buffer #N Address N*8
000000000000000 |EL ‘o ‘Size(ActuaI Count) N*8+4

Transmit Buffer
#N

EL (End of List)

Size
(Actual Count)

This is the starting address of the memory area that contains the data to be sent. It is an
absolute 32-bit address. It does not add the CU base value to determine the physical
address.

The EL bit is not used by the 82557 and is only valid for 82558 and later generation
devices. When it is set, the TBD is the last TBD associated with this transmit frame.

This 14-bit quantity specifies the number of bytes that hold information for the current
buffer. It is set by the CPU before transmission.

Receive Operation

In the simplified RFA structure, the data portion of the received frame (including the Ethernet
header) is part of the RFD and is located in contiguous memory immediately after the size field in
the RFD. The simplified memory structure is shown in the figure below.

Simplified Memory Structure

SCB

RECEIVE FRAME AREA

Y

Y

RFD

Y

RFD

Y

RFD RFD

Sequential
Data Buffer

Sequential
Data Buffer

Sequential
Data Buffer

Sequential
Data Buffer

. Receive Frame Descriptor Format

Offset Command Word Bits 31:16 Status Word Bits 15:0
00h EL | s | 000000000 | H [SF | 000 B } 0 | oK | Status Bits

04h Link Address (A31:A0)

08h Reserved

och 0 | 0 | Size] EOF { F | Actual Count

EL (Bit 31) The EL bit indicates that this RFD is the last one in the RFA.

S (Bit 30) The S bit suspends the RU after receiving the frame.

H (Bit 20) The H bit indicates if the current RFD is a header RFD. If it equals 1, the current RFD is
a header RFD, and if it is O, it is not a header RFD.

NOTE: If a load HDS command was not previously issued, the device disregards this
bit.

SF (Bit 19) The SF bit equals 0 for simplified mode.

C (Bit 15) This bit indicates the completion of frame reception. It is set by the device.

OK (Bit 13) The OK bit indicates whether the frame was received without any errors and stored in
memory. If the last frame was received with sufficient memory space, the OK bit will be
set, even if it was the last RFD in the RFA with the EL bit set. After receiving the frame,
the device enters the no resource condition, generates an RNR interrupt, and starts
discarding frames until the RU is restarted with sufficient resources.

Status Bits o . - L

(Bits 12:0) This field contains the results of the receive operation:

Link Address The link address is a 32-bit offset to the next RFD. It is added to the RU base. The link
address of the last frame can be used to form a cyclical link to the first RFD.

Size This field is used in the simplified mode and represents the data buffer size. In the
header RFD, the size field identifies the data buffer size excluding the header area. The
size value should be an even number.

EOF This bit is set by the device when it has completed placing data in the data area. Before a

F

Actual Count

new RFD can be included in the RFA, the EOF bit must be cleared by software.

This bit is set by the device when it updates the actual count field. Before a new RFD can
be included in the RFA, the F bit must be cleared by software.

The number of bytes written into the data area.

Initial Receive Frame Area Structure

To enable the device to receive frames, software must setup the following structure:
1. The SCB general pointer in the SCB should point to the first RFD on the list.

2. The link offset of each RFD in the list should point to the next RFD.

3. The EL bit in the last RFD should be set.

More About Command Unit and Receive Unit

Software can issue control commands by writing to the RUC and CUC fields of the SCB command
word. The SCB CU and RU command fields are two fields in the lower byte of the SCB command
word, called the SCB command byte. Since the 8255x clears the SCB command byte when the
control command is accepted:
* Software must wait for this byte to be cleared before the next control command can be
issued.
* (U and RU control commands must never be issued together in the same SCB write cycle.

States Of Command Unit

The CU can be modeled as a logical machine that exists in one of the following states at any given
time:

* Idle. The CU is currently not executing an action command and is not associated with a CB
in the CBL. This is the initial state. It is also the state reached after the CU finishes
executing a CBL where the last CB had an EL bit set. A CU start command must be issued
to begin execution on a new CBL.

* Suspended. The CU is not executing a CB but has read a next link pointer in the last CB that
it executed before it suspended execution. A CU resume command forces the 8255x to
continue execution from the CB at the next link address.

* Active. The CU is currently executing an action command.

States Of Receive Unit

The RU is modeled as a logical machine that takes one of the following states at any given time.
Software can determine the current RU status by reading the SCB status word in the CSR (bits 5:2).
* Idle (0000). The RU has no memory resources and is discarding incoming frames. This is

the initial RU state after reset.

* No Resources Due to No More RFDs (0010). The RU has no memory resources due to a
lack of RFDs and is discarding incoming frames. This state differs from the idle state in that
the RU accumulates statistics on the number of frames it has to discard. The 8255x enters
this state after it processes an RFD that its EL bit set.

* Suspended (0001). The RU discards all incoming frames even though free memory
resources exist to store incoming frames. The 8255x enters this state after it processes an
RFD with its S bit set.

* Ready (0100). The RU has free memory resources and is ready to store incoming frames.

™ ~el00.c #EHHA

Driver Operation

Memory-mapped mode is used exclusively to access the device's shared-memory structure, the
Control/Status Registers (CSR). All setup, configuration, and control of the device, including
queuing of Tx, Rx, and configuration commands is through the CSR. cmd_lock serializes accesses
to the CSR command register. cb_lock protects the shared Command Block List (CBL).

Transmit

A Tx skb is mapped and hangs off of a TCB. TCBs are linked together in a fixed-size ring (CBL)
thus forming the flexible mode memory structure. A TCB marked with the suspend-bit indicates
the end of the ring. The last TCB processed suspends the controller, and the controller can be
restarted by issue a CU resume command to continue from the suspend point, or a CU start
command to start at a given position in the ring.

Non-Tx commands (config, multicast setup, etc) are linked into the CBL ring along with Tx
commands. The common structure used for both Tx and non-Tx commands is the Command Block
(CB).

cb_to_use is the next CB to use for queuing a command; cb_to_clean is the next CB to check for
completion; cb_to_send is the first CB to start on in case of a previous failure to resume. CB clean
up happens in interrupt context in response to a CU interrupt. cbs_avail keeps track of number of
free CB resources available.

Receive

The Receive Frame Area (RFA) comprises a ring of Receive Frame Descriptors (RFD) + data
buffer, thus forming the simplified mode memory structure. Rx skbs are allocated to contain both
the RFD and the data buffer, but the RFD is pulled off before the skb is indicated. The data buffer
is aligned such that encapsulated protocol headers are u32-aligned. Since the RFD is part of the
mapped shared memory, and completion status is contained within the RFD, the RFD must be
dma_sync'ed to maintain a consistent view from software and hardware.

In order to keep updates to the RFD link field from colliding with hardware writes to mark packets
complete, we use the feature that hardware will not write to a size 0 descriptor and mark the
previous packet as end-of-list (EL). After updating the link, we remove EL and only then restore
the size such that hardware may use the previous-to-end RFD.

Under typical operation, the receive unit (RU) is start once, and the controller happily fills RFDs as
frames arrive. If replacement RFDs cannot be allocated, or the RU goes non-active, the RU must
be restarted. Frame arrival generates an interrupt, and Rx indication and re-allocation happen in the
same context, therefore no locking is required. A software-generated interrupt is generated from the
watchdog to recover from a failed allocation scenario where all Rx resources have been indicated
and none replaced.

B ~el00.c ZEHEBELRAAHAEH

CSR (Control/Status Registers) declarations

Device Addressing Formats

struct csr {

Points to Base Register 32-bit Offset Pointer

Physical Address

struct {

Start of Command

Block List (CBL) CU Base (32-bit)

SCB General Pointer

Base (32) + Offset (32)

u8 status; // CU, RU jikpg

Start of Receive Frame

Area (RFA) RU Base (32-bit)

SCB General Pointer

Base (32) + Offset (32)

/1 B T R A

u8 stat_ack;

Next Command Block

(©B) CU Base (32-bit)

Link Address in CB

Base (32) + Offset (32)

Start of TBD Array CU Base (32-bit) TBD Array Address in TxCB

Base (32) + Offset (32)

Next Receive Frame

RU Base (32-bit) Link Address in RFD

Base (32) + Offset (32)

u8 cmd_lo; //CU, RU 4
u8 cmd_hi; // FEIEH & HE
u32 gen_ptr; // CU, RU 2]

} scb;

u32 port;

ul6 flash_ctrl;

u8 eeprom_ctrl_lo;

Descriptor (RFD)
: Transmit Buffer #n Address in Offset (32)

TX Buffer No Base Register TBD Array (Physical address)

g;’)“p Buffer Qump | oy Base (32-bit) | Buffer Address in CB Base (32) + Offset (32)
Offset (32

Port Dump / Self-Test No Base Register Port Address = V()
(Physical address)
Offset (32)

Dump Counters No Base Register SCB General Pointer

u8 eeprom_ctrl_hi;

(Physical address)

u32 mdi_ctrl;
u32 rx_dma_count;

b
/1 RU K218 m 5K BE

enum scb_status {

rus_no_res = 0x08,
rus_ready = 0x10,
rus_mask = 0x3C,

b
/] T E T REE I

enum scb_stat_ack {

To support linear addressing, the device should be programmed as follows:
¢ Load a value of 00000000h into the CU base using the Load CU Base Address SCB command.
¢ Load a value of 00000000h into the RU base using the Load RU Base Address SCB command.

¢ Use the offset pointer values in the various data structures as absolute 32-bit linear addresses.

stat_ack_not_ours = 0x00,

stat_ack_sw_gen = 0x04, /] ERBE RS R T

stat_ack_rnr = 0x10, /l BACEIRA 2

stat_ack_cu_idle = 0x20, // CU A idle 5% suspended jik#&(CNA interrupt)
stat_ack_frame_rx = 0x40, // RU W #|—{f frame

stat_ack_cu_cmd_done = 0x80,
stat_ack_not_present = OxFF,

/I CU 528 T —(BZk FER(1 bit set)f cb

stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),

/1 £ 2 RX 8 TX R & H BT sesa s &, EREFAR AT

b

enum scb_cmd_hi {
irg_mask_none = 0x00,

irq_mask_all = 0x01, /] EE R
irg_sw_gen =0x02, R Il)

b

enum scb_cmd_lo { // SCB & Fi] gEfn <
cuc_nop = 0x00,
ruc_start = 0x01,
ruc_load_base = 0x06,
cuc_start = 0x10,

cuc_resume = 0x20,
cuc_dump_addr = 0x40,
cuc_dump_stats = 0x50,
cuc_load_base = 0x60,
cuc_dump_reset = 0x70,

b

CB (Command Block) declarations

struct cb {
__lel6 status; /] TS ITEE R
__le16 command; // f54 J CU #£#(suspend, interrupt, end of list, etc)
__le32 link; // ¥&m T E CB
union {
u8 iaaddr[ETH_ALEN]; /] %48+ MAC address 4 5
struct config config; /I EEMmLHM, NAEF2% i8255x Tt 62 H
struct multi multi; // multicast 3 7E < 5 H
struct { /Il EkmSHA
u32 tbd_array; // TBD FfFI 75 & BEar iSRS Atk
ul6 tcb_byte_count; // skb ERHIRAE cb 12, ZE:%£[bytes(F~H,# 0)
u8 threshold; // Bt E M. transmit FIFO &/ 7] F 25 1
u8 tbd_count; // TBD B3| 7t 2 {f &1
struct { / 5i—1E TBD B #7E CB #
_ 1e32 buf_addr; /] (8% EoRH(skb->data)) E #S s 1B B (L 4E
__le16 size; /] B Eix E kR (skb->1en)
ul6 eol; // 1t CB # &1z —1f TBD?
} tbd;
} tcb;
__1e32 dump_buffer_addr;
by
// LLF 8 i8255x #ERH, B 4% e100.c AER(EH
struct cb *next, *prev; /I BB AR CB
dma_addr_t dma_addr; // CB BER E B sC R RS Aokt
struct sk_buff *skb; /] W 8% skb(FE TxCB H# 4 NULL)
b
enum cb_status { /l CB #7453
cb_complete = 0x8000, /] R INRE 2 {1 flags &R & a2k
cb_ok = 0x2000,
|5
enum cb_command { // CB command word
cb_nop = 0x0000, /| AR dr %
cb_iaaddr = 0x0001, /] 3 A K MAC address
cb_config = 0x0002, /] 3B A TESE
cb_multi = 0x0003, /I %% multicast addresses
cb_tx = 0x0004, /] {E%E
cb_ucode = 0x0005, // # N\ microcode
cb_dump = 0x0006, // dump A registers {E%] memory

/] WATLAR (&) % CB i 2 [71 flags
cb_tx_sf = 0x0008, /1 0: E6ERHE TCB #(simplified mode)

cb_tx_nc = 0x0010, // 0: controller does CRC (normal)

cb_cid = 0x1f00, // CNA A B it
cb_i =0x2000, | AR R PUTIRE £ P BT
cb_s = 0x4000, // T2 E1T1%,CU A suspended R 5E
/I (fR#% config, AT # 4= CNA interrupt)
cb_el =0x8000, // 7% CBL #&1&—1F CB, £ #1711%,

/1 CU HE A idle iR 7,3 # CNA/CI interrupt
b

RFD (Receive Frame Descriptor) declarations

struct rfd {

__lel6 status; /] UG RHIREE (cb_complete & cb_ok)
__le16 command; // RU # il (suspend, end of list)
__le32 link; /| F—{f RFD EH&zligaa ik
__le32 rbd; // Reserved
__lel6 actual_size; /] EERUE| P& K bytes 1
__lel6 size; // 1% RFD 142 data buffer size
b
struct rx { /Il B2 B T Rx-skb
struct rx *next, *prev;
struct sk_buff *skb; /! 725 rfd+ethernet frame
dma_addr_t dma_addr; // skb->data P E B LB RS AL HE
b

#M 4T SCB Commands & Action Commands

#define E1I00_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
#define E100_WAIT SCB_FAST 20 /* delay like the old code */
static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
{
unsigned long flags;
unsigned int i;
int err = 0;

spin_lock_irgsave(&nic->cmd_lock, flags); /554t SCB FFEU(ZE 1k BT, 77 T IRQ & &)

/* Previous command is accepted when SCB clears */
for (i = 0; i <E100_WAIT_SCB_TIMEOUT,; i++) {
if (likely('ioread8(&nic->csr->scb.cmd_lo)))
break;
cpu_relax();
if (unlikely(i > E100_WAIT_SCB_FAST))

udelay(5);
}
if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
err = -EAGAIN;

goto err_unlock;

}

if (unlikely(cmd != cuc_resume))
iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
iowrite8(cmd, &nic->csr->scb.cmd_lo);

err_unlock:

}

spin_unlock_irgrestore(&nic->cmd_lock, flags);

return err;

static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,

{

int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
struct cb *cb;

unsigned long flags;

int err = 0;

spin_lock_irgsave(&nic->cb_lock, flags);

if (unlikely(!nic->cbs_avail)) {

err = -ENOMEM;

goto err_unlock; cbs
}
cb = nic->cb_to_use; CAREAEIE | HAGE | TRREEM
nic->cb_to_use = cb->next;

nic->cbs_avail--;

cb->skb = skb; cb_to_clean c¢b to send cb_to_use

err = cb_prepare(nic, cb, skb); /] EefFE LT cb N2 (40:cb->command, cb->tcb)
if (err)
goto err_unlock;

if (unlikely(!nic->cbs_avail))
err = -ENOSPC;

/* Order is important otherwise we'll be in a race with h/w:
* set S-bit in current first, then clear S-bit in previous. */
cb->command |= cpu_to_le16(cb_s);

wmb();

cb->prev->command &= cpu_to_le16(~cb_s);

while (nic->cb_to_send != nic->cb_to_use) {

if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
nic->cb_to_send->dma_addr))) {
/* Ok, here's where things get sticky. It's
* possible that we can't schedule the command
* because the controller is too busy, so
* let's just queue the command and try again
* when another command is scheduled. */

if (err == -ENOSPC) {
/Irequest a reset
schedule_work(&nic->tx_timeout_task);

}

break;

} else {
nic->cuc_cmd = cuc_resume;
nic->cb_to_send = nic->cb_to_send->next;

}

err_unlock:
spin_unlock_irgrestore(&nic->cb_lock, flags);

return err;

} XS

nic: netdev_priv of el00 } - .
FEE# skb | A BAMEF L | THAEH

struct nic { * *
struct net_device *netdev;

struct pei_dev *pdev; rx_to_use rx_to_clean
struct rx *rxs; // pointer to an array of struct rx
struct rx *rx_to_use;

struct rx *rx_to_clean;

struct rfd blank_rfd; /1 rid # I E AR

enum ru_state ru_running; // H#I RU fk#E

spinlock_t cb_lock;

spinlock_t cmd_lock;

struct csr __iomem *csr; // CSR FE @ #HE e 25 M EC R A Ar kit
enum scb_cmd_lo cuc_cmd; / FEIE %R CU w4

unsigned int cbs_avail; // 7] cb IfRE =

struct napi_struct napi; // structure for NAPI scheduling

struct cb *cbs; // pointer to an array of CB

struct cb *cb_to_use; // f8 w15 —1{E "] i CB

struct cb *cb_to_send; /1 fa B — AR #4T CB

struct cb *cb_to_clean; /1 Fa1A E —E R EL CB

__lel6 tx_command; /] {E3% 74 (cb_tx|cb_tx_sf), A A& ¥ 45 1L cb->command

struct timer_list watchdog; // carrier detection & statistics update
dma_addr_t cbs_dma_addr; // cbs [#i5| EaEEl EEE Ak

.
—

2\

> el00 & &7 3

static const struct net_device_ops e100_netdev_ops = {

b

.ndo_open
.ndo_stop
.ndo_start_xmit

= e100_open,
=e100_close,

= e100_xmit_frame,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode =e100_set_multicast_list,
.ndo_set_mac_address= e100_set_mac_address,
.ndo_change_mtu = e100_change_mtu,
.ndo_do_ioctl =e100_do_ioctl,
.ndo_tx_timeout = e100_tx_timeout,

static void e100_get_defaults(struct nic *nic)

{

}

/* no interrupt for every tx completion, delay=256us (Manual: delayed CNA interrupt) */
nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | cb_cid);

/* Template for a freshly allocated RFD */
nic->blank_rfd.command = 0;

nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);

static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)

{

struct net_device *netdev;
struct nic *nic;
int err;

-

S

if (!(netdev = alloc_etherdév(sizeof(struct nic))))

return -ENOMEM;

netdev->netdev_ops = &e100_netdev_ops;
netdev->watchdog_timeo = E100_WATCHDOG
nic = netdev_priv(netdev);

|

/* ether_setup - setup Ethernet network device

* @dev: network device

*

* FLll the device structure with Ethernet-generic values.
*/

void ether_setup(struct net_device *dev)

dev->header_ops ð_header_ops;

dev->type ARPHRD_ETHER;
dev->hard_header_len = ETH_HLEN;
dev->mtu ETH_DATA_LEN;

dev->addr_len
dev->tx_queue_len 1000; /* Ethernet wants good queues */
dev->flags IFF_BROADCAST | IFF_MULTICAST;
dev->priv_flags |= IFF_TX_SKB_SHARING;
memset(dev->broadcast, OxFF, ETH_ALEN);

ETH_ALEN;

}

_PERIOD;

netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);

nic->netdev = netdev;
nic->pdev = pdev;

netif_napi_add() must be used to initialize a napi context
prior to calling *any* of the other napi related functions.

if ((err = pci_enable_device(pdev)))
goto err_out_free_dev;

if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {

err = -ENODEV;
goto err_out_disable_pdev;

}

if ((err = pci_request_regions(pdev, DRV_NAME)))

goto err_out_disable_pdev;

Mark all PCI regions associated with
the PCI device as reserved

nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));

lf (!niC->CSI‘) { pci_iomap - create a virtual mapping cookie for a PCI BAR
@dev: PCI device that owns the BAR
err = -ENOMEM; @bar: BAR number

@maxlen: length of the memory to map

goto err_out_free_res;
Using this function you will get a __iomem address to your device BAR.
} You can access it using ioread*() and iowrite*(). These functions hide
the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way.

8100_get_d6fau1tS(HiC); @maxlen specifies the maximum length to map. If you want to get access to
the complete BAR without checking for its length first, pass %0 here.

/* locks must be initialized before calling hw_reset */
spin_lock_init(&nic->cb_lock);
spin_lock_init(&nic->cmd_lock);

/* Reset the device before pci_set_master() in case device is in some
* funky state and has an interrupt pending - hint: we don't have the
* interrupt handler registered yet. */

e100_hw_reset(nic); // use SCB port interface to reset

pci_set_master(pdev); // enable device bus mastering

init_timer(&nic->watchdog);

nic->watchdog.function = e100_watchdog;
nic->watchdog.data = (unsigned long)nic;
INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);

if ((err = e100_eeprom_load(nic))) // & A EEPROM %
goto err_out_iounmap;
e100_phy_init(nic); /1 F MIL Ay D86 PHY
memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); // 5i#3 EEPROM _ MAC address

if ((err = register_netdev(netdev)))
goto err_out_iounmap;

return 0O;

err_out_iounmap:
pci_iounmap(pdev, nic->csr);
err_out_free_res:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
err_out_free_dev:
free_netdev(netdev);
return err;

-~ @B NamEME (K14%)

HEREHE N A 15 3 {H e100.c:
e100.c — linux-3.18.14/drivers/net/ethernet/intel/e100.c // J5 E/REH &M kernel A e100.c

e100.1ab.c /I BVEE AR e100.c, P FEEENH AR D HR
e100.orig.c /1 5715 e100.c (EERFEEAZEITHIAE)

BH5E e100.c, FBHATLL T ES, HEAEEE QEMU i RAIRER -

1. make -j4 -C linux-3.18.14/ // E#7 compile e100.c

2. ./install-kmod-to-rootfs.sh // #% 100.ko copy % rootfs &

3. ./pack-rootfs.sh // E#H1¥T 8 rootfs.cpio.gz

4. sudo ./start-gemu.sh /] e E R M58 QEMU

2% N YRS MEER#, 5ER e100_up() X e100_down()iE Wi fE R & HE 1 BRI AIE = -

// BLE rxs P (=Rx ring) 28 HE frE 1E A Bl s i 25 i
static int e100_rx_alloc_list(struct nic *nic)
{

struct rx *rx;

unsigned int i, count = 256;

struct rfd *before_last;

nic->rx_to_use = nic->rx_to_clean = NULL;
nic->ru_running = RU_UNINITIALIZED;

if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) | & A& thread context 47,

return -ENOMEM; R GFP KERNEL LA T
for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
rx->prev = (i ==0) ? nic->rxs + count - 1 : rx - 1;
if (e100_rx_alloc_skb(nic, rx)) {
e100_rx_clean_list(nic);
return -ENOMEM;
}

}
/* Set the el-bit on the buffer that is before the last buffer.

* This lets us update the next pointer on the last buffer without

* worrying about hardware touching it.

* We set the size to 0 to prevent hardware from touching this buffer.

* When the hardware hits the before last buffer with el-bit and size

* of 0, it will RNR interrupt, the RU will go into the No Resources

* state. It will not complete nor write to this buffer. */

IX = NiC->IrXs->prev->prev;

before_last = (struct rfd *)rx->skb->data;

before_last->command |= cpu_to_le16(cb_el);

before_last->size = 0;

pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, | & before_last #)
sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); LA HATIEH

nic->rx_to_use = nic->rx_to_clean = nic->rxs;
nic->ru_running = RU_SUSPENDED;

return O;

}

1518 + 4

#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)

{

if (1(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))

return -ENOMEM; Since an ethernet header is 14 bytes, network drivers often end up with the
IP header at an unaligned offset. The IP header can be aligned by shifting the

/* Init, and map the RFD. */ start of the packet by 2 bytes.

skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));

rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);

/* Link the RFD to end of RFA by linking previous RFD to

* this one. We are safe to touch the previous RFD because Copy rx->dma_addr 2|

* it is protected by the before last buffer's el bit being set */ | Prev—rfd>Link: &/l

. s protected by the before last buffer's e eing se put_unaligned 1e320)2 B &

if (rx->prev->skb) { rx->skb->data A2 %5 #1744t 2
struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; | bytes,44¥ prev_rfd->1link &
put_unaligned_le32(rx->dma_addr, &prev_rfd->link); # align /£ 32-bit boundary L
pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,

sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
}
return O;
}

// B & cb PHiF(=Tx ring) 2k REFE A IR B A i &
static int e100_alloc_cbs(struct nic *nic)
{

struct cb *cb;

unsigned int i, count = 128;

nic->cuc_cmd = cuc_start; // F{X e100_exec_cbO)HIi4
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
nic->cbs_avail = 0;

J&J& 1% Fl dma_alloc_coherent()
nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, &nic->cbs_dma_addr);
if (!nic->cbs)

return -ENOMEM;
memset(nic->cbs, 0, count * sizeof(struct cb));

for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;

cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
cb->link = cpu_to_le32(nic->cbs_dma_addr +
((i+1) % count) * sizeof(struct cb));

nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
nic->cbs_avail = count;

return O;

}

static void e100_disable_irg(struct nic *nic)

{
unsigned long flags;
spin_lock_irgsave(&nic->cmd_lock, flags);
iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
e100_write_flush(nic);
spin_unlock_irgrestore(&nic->cmd_lock, flags);

}

static void e100_disable_irg(struct nic *nic)

{
unsigned long flags;
spin_lock_irgsave(&nic->cmd_lock, flags);
iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
e100_write_flush(nic);
spin_unlock_irgrestore(&nic->cmd_lock, flags);

}
static int e100_hw_init(struct nic *nic)
{

int err = 0;

e100_hw_reset(nic);

if (lin_interrupt() && (err = e100_self_test(nic))) // no need to check in_interrupt()?
return err;

if ((err = e100_phy_init(nic
(« return e_rI; y-nit(nic))) K345 CU, RU 44 &E# (4= :TxCB, RFD)
. u ’ . P 45 1ink/pointer R & offset, & m L
if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) | pase # 4 2 & T 82 S0 1688 & 0942 4k . i3 42
return err; J}E", base Zx/% 0, link/pointer %t ¥A &
if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) | #& /A A L iea 4k,

return err;

BAE S BRI do i
if ((err = e100_exec_cb(nic, NULL, e100_configure))) i e, o spromiscuous

mode, checksum offloading.

return err;
if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) // # i€ i8255x ") MAC address
return err;

e100_disable_irq(nic); /] EHEEE IE e100 R
return O;

}
/1 FEEhE[EIE RU GEE: B HMEE &

static inline void e100_start_receiver(struct nic *nic, struct rx *rx)

{

if (Inic->rxs) return;

}

if (RU_SUSPENDED != nic->ru_running) return;

/* handle init time starts */
if (Irx) rx = nic->1xs;

/* (Re)start RU if suspended or idle and RFA is non-NULL */
if (rx->skb) {
e100_exec_cmd(nic, ruc_start, rx->dma_addr);
nic->ru_running = RU_RUNNING;

static int e100_up(struct nic *nic)

{

}

/* AR SERGE R (T AR 20

* 1. Bt B =M% Rx ring & Tx ring

* 2., e100 WEEEWILA{L

* 3. %E RU

* 4, 3% nic->watchdog timer F4f(mod_timer) / B & & carrier detection

* 5, [Wi% /05D (request_irg()) T EHE K 2 e100_intr()

* 6, REENAE R/ T A (T8 (netif_wake_queue()): 3@ %0 /& AT LABA A 100 &R T
* 7. 1% NAPI (napi_enable())

* 8. & e100 BRIz, ## % NAPLEARKHHEHEET)

*/

static void e100_down(struct nic *nic)

{

}

/* ARASERIE B AT AIAE U
* BRPAS N E PR R BB S, BSTRRRATE FER 2 R H RE#) (F£7 race condition)

* 1. 2 NAPI(napi_disable(), & & %% poll 5¢/k)

* 2.5 - AEER /) T A% (T8 (netif_stop_queue())

* 3, BH nic->watchdog timer i carrier #% % off(netif_carrier_off())
* 4. HHE el00 IZE 1EH A (e100_hw_reset())

* 5. %O EUE B D BT IR EE B =X (free_irq())

* 6. A Tx ring & Rx ring 75 [H

*/

SER%, £ QEMU #HUTESR, WRTEEHE EHEE, REZIELFE “el00_intr” HE7EHH
| © iR nic->watchdog timer A7E#(F, dmesg #EH 5] “NIC Link is Up...” - 11REH LB KL
kernel messages,] echo 0 > /proc/sys/kernel/printk, 2%l kernel messages %%/ console £, {HAK
=2 A LU%EiE dmesg BEE ©

A~ PERESRH ()

AR EREI R, BB T HAKEIEEHCR, P —(EHEhEs CPU RaH - ERMHIE, 7
il RV ERERE T, ¥ CPU BB BAR A, A CPU BuB R AR A E EESUTHI LIE, K

HUE LS ET o AR A R T EBE VR H AN Rx 1l $Rs(polling) 75 =UAT LA
RECE R AT CPU 0K - Wi HAT L9 RIEARCR, AR R AR s LA Bkl DU HE -
B4 Linux @RS, A BRI = -

fiE L, MR EEE R AR Rx P ETR, RSB, W25 Rx PETERE - RO& N ET
IEEENE AR Nt EEIFTE Rx B AR TS (A0 N E) - S e R B e iR — 1 Rx #81R,
JEIBHAIR D MR AN 75 Zah, 0 EOHT AORF Rx T4

net_rx action

" Budget used up or Yes ——

8 processing takes too long? RATSETIRE B, SEEITRG

>

= No

= Call poll method

i)

S = D budget

=2 ecrease budge

S8 :) :
work == weight — Move device to end of poll list

FEGHRERE, WiURTE softirg context TEUT, EAVE LiLE BT Y bottom half -
N ERENRE & 2 AR A R

/] A E R T, weight 25 [H] poll JEELRY B8 E LR
void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
int (*poll)(struct napi_struct *, int), int weight);
/] W TE (A s B2 5 DR B EE A
bool napi_schedule_prep(struct napi_struct *n);
/] HERR E (EdaE B - 5550 napi_schedule_prep()Mi# H fij /75 7] LIFERY napi_schedule()
void napi_schedule(struct napi_struct *n);
/1 BRI (R AL T e A BT Rx S A0 R B AT R 5

void napi_complete(struct napi_struct *n);

static irgreturn_t e100_intr(int irq, void *dev_id)
{
/* AR FERGE R IR o FETHIEE R RER: CB ZEA(CX, CNA), Rx 5EH(FR),
* Rx & JF R (RNR) LB #EE (SWI) o FETERI T AE, Bl -
k
* 1. €100 HEHEE? (nic->csr->scb.stat_ack)
* QRE M ETAE €100 #RY, IRQ_NONE HE#ER
* 2.] scb.stat_ack ack FrARIHET, LU#ER P ETEHI%(de-assert interrupt line)
* 3, W ETR K& RU EF A E(stat_ack_rnr), # nic->ru_running #% % RU_SUSPENDED
* 4. AR EHRAEE), 251k 100 FE H BTG S
* 5, DL IRQ_HANDLED #5R

*/
}

static int e100_poll(struct napi_struct *napi, int budget) // budget &% [F| poll £ % F] RH G &
{

struct nic *nic = container_of(napi, struct nic, napi);
unsigned int work_done = 0; / Fe kI SE A L1

e100_rx_clean(nic, &work_done, budget); // #U RFA EATE R}
e100_tx_clean(nic); / IR E 5ERA CB

if (work_done < budget) { // #/®* RFA i3 @# R T
napi_complete(napi);
e100_enable_irq(nic);

}

return work_done;

}

seR%, £ QEMU #BUTEER, WRTEENGEE EMHEMR, MAEHERIWT “el00_intr”flUE K EZH
ZibEHARE T - R A B, TLUES] "el00_tx_clean”FHE HF

e100_intr: 314348 callbacks suppressed

s HenE (1F)

ndo_start xmlt()m%EijJﬁ_E@”éafﬁni sk_buff fUE =, B4 L8 netif_tx_lock()fR#, 7 SMP IRz
IAGHFERFHAT o Bk 1 EETE S AN R ETEER - EMENH T ring 1A =Ml U FE LD
EEERIRE, WZHEFIY netif_stop_queue()i@%0_E g AN ZEFHIEIY ndo_start_xmit()

/] HEfE T —{F TxCB, ZR{&% skb
static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
struct sk_buff *skb)
{
dma_addr_t dma_addr;
cb->command = nic->tx_command; // (cb_txlcb tx sfl cb cid)
iZfB skb & e100 A T alloc &y » ©EZH
dma_addr = pci_map_single(nic->pdev, | #% £/ K& 5 e100 45 2L DMA 77 K, %
skb->data, skb->len, PCI_DMA_TODEVICE);

if (unlikely(skb->no_fcs)) // the last 4 bytes of the SKB payload packet as the CRC
cb->command |= cpu_to_le16(cb_tx_nc); // CRC from memory

else
cb->command &= ~cpu_to_le16(cb_tx_nc); // CRC inserted by controller

/* interrupt every 16 packets regardless of delay */ | i # x % # TxCB % &40 4 & & ¥rif 4= CPU %
if ((nic->cbs_avail & ~15) == nic->cbs_avail) TxCB B o —fx LT » AA £ RE R CBL £
cb->command |= cpu_to_le16(cb_i); # % —18 TxCB (cb_s set) * 4+ & & F Bi(CNA)

cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
cb->u.tcb.tcb_byte_count = 0; /] BEEE RN A BEREE TCB # (cb_tx_sf)
cb->u.tcb.tbd_count = 1; // A —M@ tbd array element
cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); // dma_addr of skb->data
cb->u.tcb.tbd.size = cpu_to_le16(skb->len);

return 0O;

}
// €100 fEixE 5=

static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)

{
/* TRAE 5 B R AR
* 1. TEEREIEL 4 el00(fF—1E TxCB i e100_exec_cb()) °
* 2. 41 e100_exec_cbOEIEZFIAE, BRI FEE L EREEA -
* 3, W= return NETDEV_TX_BUSY & NETDEV_TX_OK #7R °
*/

}

// CB SEA R EEE K X (FH e100_poll()FFrY)
static void e100_tx_clean(struct nic *nic)
{
struct net_device *dev = nic->netdev;
struct cb *cb;
int tx_cleaned = 0; // &Y &R TxCB

spin_lock(&nic->cb_lock);

/* Clean CBs marked complete */
for (Cb = nic_>cb_t0_clean; CBIM % %M » # cb_to_clean 4 » 3| cb_to_send Z 7] »

| RE TR CB o A 2 CB 7T A& AEHMAT - TRARN
cb->status & cpu_to_le16(cb_complete);| cp "4 b complete status 4k BHEE 1 -

cb = nic->cb_to_clean = cb->next) {

I* AR SERERR AR o MY b #2& Z B

k%

* 1. 41538 2 — 1 TxCB (cb->skb != NULL):

* - SiEtE R FE T (dev->stats.tx_packets, dev->stats.tx_bytes)

* - [A145 skb =S [H] - : -

* - pci_unmap_single(tbd array buffer, ...) | &% fcjlr?lzgx‘;‘izjl’:zg’are()#f skb->data
* - dev_consume_skb_any() -

k%

- cb->skb #% 45 NULL
* - tx_cleaned &4 1
* 2. cb [y status EE 4 0 (B E! ABEEHH)
* 3. nic->cbs_avail++
*/
}

spin_unlock(&nic->cb_lock);

/* Recover from running out of Tx resources in xmit_frame */
if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
netif_wake_queue(nic->netdev);

return;

}
SERUE, 18 QEMU #$T, if

£ guest #{7: ping 10.0.0.1
£ host $1/7 : sudo tcpdump -i tap0

tcpdump AJ DRSS ST I RECRN A B &R - W2 TxCB A IR/ TEhEke, T LUBIE] guest AET%
H ARP request; {H host [FfE["] ARP reply, 7ERE{Ee100 Rx A, guest HEjEILE] -

23:45:43.334746 ARP, Request who-has 10.0.0.1 tell 10.0.0.2, length 28
23:45:43.334761 ARP, Reply 10.0.0.1 is-at 36:f9:c7:87:ce:dc (oui Unknown), length 28

1t guest #17 ifconfig, 4R e100_tx_clean()f IEAERIIT TxCB K HEHr#iat %k, &K ping i ifconfig
) TX packets & TX bytes EfE & -

etho Link encap:Ethernet HWaddr 52:54:00:12:34:56
inet addr:10.0.0.2 Bcast:10.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::5054:ff:fel12:3456/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:23 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:1278 (1.2 KiB)

+ -~ Hagk (X1%F)

&2 5 S IUHT Receive Hi{7 A5

%

|

// RFA & RHE R B =X (FH e100_poll()FFrH)
static void e100_rx_clean(struct nic *nic, unsigned int *work_done, unsigned int work_to_do)

{

struct rx *rx; Ixs
int restart_required = 0, err = 0; /
struct rx *old_before_last_rx, *new_before_last_rx; B B4 skb| A EHE L% | T 2 1
struct rfd *old_before_last_rfd, *new_before_last_rfd; i i
rx_to_use rx_to_clean

/* Indicate newly arrived packets */
for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {

err = e100_rx_indicate(nic, rx, work_done, work_to_do);

/* Hit quota or no more to clean */

if ;EAGAIN == err || -ENODATA == err)

break;

} | &P for @B » R A -EAGAIN %X, -ENODATA M A& 1 i, o R & A rx->skb==NULL #)H %, »
€ BB A EL bit 89 rfd > R1% VA-ENODATA & B o
/* On EAGALIN, hit quota so have more work to do, restart once cleanup is complete.
* Else, are we already rnr? then pay attention!!! this ensures that the state machine
* progression never allows a start with a partially cleaned list, avoiding a race between
* hardware and rx_to_clean when in NAPI mode */
if (EAGAIN != err && RU_SUSPENDED == nic->ru_running)

restart_required = 1;

old_before_last_rx = nic->rx_to_use->prev->prev;
old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;

/* Alloc new skbs to refill list */
for (rx = nic->rx_to_use; 'rx->skb; rx = nic->rx_to_use = rx->next) {
if (unlikely(e100_rx_alloc_skb(nic, rx)))
break; /* Better luck next time (see watchdog) */

}

new_before_last_rx = nic->rx_to_use->prev->prev;
if (new_before_last_rx != old_before_last_rx) { // E##4% EL bit (i1 &
/* Set the el-bit on the buffer that is before the last buffer. This lets us update the next
* pointer on the last buffer without worrying about hardware touching it. We set the
* size to 0 to prevent hardware from touching this buffer. When the hardware hits
* the before last buffer with el-bit and size of 0, it will RNR interrupt, the RUS will
* go into the No Resources state. It will not complete nor write to this buffer. */
new_before_last_rfd = (struct rfd *)new_before_last_rx->skb->data;
new_before_last_rfd->size = 0;
new_before_last_rfd->command |= cpu_to_le16(cb_el);
pci_dma_sync_single_for_device(nic->pdev,
new_before_last_rx->dma_addr, sizeof(struct rfd),
PCI_DMA_BIDIRECTIONAL);

/* Now that we have a new stopping point, we can clear the old stopping point. We

* must sync twice to get the proper ordering on the hardware side of things. */
old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
pci_dma_sync_single_for_device(nic->pdev,
old_before_last_rx->dma_addr, sizeof(struct rfd),
PCI_DMA_BIDIRECTIONAL);

old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN

+ ETH_FCS_LEN);

pci_dma_sync_single_for_device(nic->pdev,
old_before_last_rx->dma_addr, sizeof(struct rfd),
PCI_DMA_BIDIRECTIONAL);

}

if (restart_required) { // skb 7 T, EL bit thf§#4F T, mLLES RU GE(E
e100_start_receiver(nic, nic->rx_to_clean);
if (work_done)
(*work_done)++;

}

static int e100_rx_indicate(struct nic *nic, struct rx *rx,
unsigned int *work_done, unsigned int work_to_do)

{

[* ARASERGE BRI FEEC o RERSEREUICE (0 B K2l skb->data 12, &5 A rfd LA N &3l
* status: cb_complete(5E A B RHEN), cb_ok(ERHEESERR), actual_size(EFEE A byte 1)
*
* 1. finFE*work_done >= work_to_do, BE#E4iHE -EAGAIN
* 2. fiE — T rx->skb #] rid->status FIE, A HERE N —F
* - Al pci_unmap_single()f7, skb->data &} device, EfirE LZE LM
* pci_dma_sync_single_for_cpu()
* - i—{# rmb()7E:EHX rfd status B{E 2 1%, WELRELrfd actual size {EAVEN{EEE A7 rfd
* status {ERIVEIE 2 1% (FFE574 F cb_complete §i, rfd actual size 4% #)
* 3. 4R rfd status 2 F cb_complete (GE 1 skb #% ¥ ka2 .3 end of list)
* - WA iEME rfd & EL bit, HFAM&R% RU BT, HREEEIARE scb.status
* rus_no_res, #% nic->ru_running # % RU_SUSPENDED -
* - LI -ENODATA %R
* 4. B rfd->actual_size(A1 5 LSB 14 {f bit &3 size), JEEREEELE S -
* 5. pci_unmap_single(rx->dma_addr ...)
* 6. 1 ERHT EAE skb #(F4% skb #1 data pointer)
* - skb #E O ERHLEFE rfd 2 1%, rfd WZEEFR(H skb_reserve())
* - [HEAJ actual_size & RHE skb ZE (i skb_put())
* - 50 b g H a R E R E skb->protocol=eth_type_trans(skb, nic->netdev)
* 7. Wk rfd status i2F cb_ok, [EE = [H(dev_kfree_skb_any()), #HI

- St &R Hi(stats.rx_packets, stats.rx_bytes)

- B % E] g 25 netif_receive_skb() It recetve kb - process recetue buffer fram netork

- (*work_done)++ * @skb: "buffer o process
* 8. rx->skb = NULL; return 0; D Sloye succecds, Tre bufter may be.dropped dering proceesing.
*/ oty be eaTien Fron Softira context and- interrupts thould be enabiad.

) s s Gy o
:/NET_RX_DROP: packet was dropped

FERETE QEMU 4T, AR BWEERERR, host B2 guest 2 [H 1) ping J& 7] 1EH #EAE o

	一、網路驅動程式概述
	驅動程式與網路層
	網路裝置描述 net_device
	網路裝置函式 net_device_ops
	封包 skbuff 描述及操作

	二、實驗環境設定（實作）
	編譯 Linux kernel 及 BusyBox
	建立 root filesystem
	啟動 QEMU

	三、Intel 8255x 軟體介面簡介
	The Shared Memory Architecture
	Control / Status Register (CSR)
	System Control Block (SCB)
	SCB Status Word
	SCB Command Word
	Transmit Action Command
	Receive Operation
	Initial Receive Frame Area Structure

	More About Command Unit and Receive Unit
	States Of Command Unit
	States Of Receive Unit

	四、e100.c操作說明
	Driver Operation
	Transmit
	Receive

	五、e100.c之資料結構宣告及基礎操作
	CSR (Control/Status Registers) declarations
	CB (Command Block) declarations
	RFD (Receive Frame Descriptor) declarations
	執行 SCB Commands及Action Commands
	nic: netdev_priv of e100

	六、e100裝置偵測
	七、網路介面開啟和關閉（實作）
	八、中斷處理與輪詢（實作）
	九、封包傳送（實作）
	十、封包接收（實作）

