
Physical Memory Management
in Linux

Hao-Ran Liu

Table of Contents

Virtual Address Space and Memory
Allocators in Linux
Describing Physical Memory
Boot Memory Allocator
Physical Page Allocator
Reference

Virtual Address Space and
Memory Allocators in Linux

Linux Virtual Address Layout
3 GB 1 GB

user kernel

scope of a process’ page table

3G/1G partition
The way Linux partition a 32-bit address space
Cover user and kernel address space at the same time
Advantage

Incurs no extra overhead (no TLB flushing) for system calls
Disadvantage

With 64 GB RAM, mem_map alone takes up 512 MB memory from
lowmem (ZONE_NORMAL).

Linux Virtual Address Layout
~4 GB 16 MB

4G/4G partition
Proposed by Red Hat to solve mem_map problem
Disadvantage (Performance drop!)

Switch page table and flush TLB for every system call!
Data is copied “indirectly” (with the help of kmap) between user and
kernel space

Advantage
Only on machine with large RAM

user shared
area

scope of a process’
page table

~4 GB 16 MB

kernel shared
area

scope of kernel’s
page table

switch the page table before system calls

Page Table Switch in a
4G/4G Configuration

0x02000000 0xF8000000
vmalloc

area
kmap
area

0xFFFFFFFF
16MB
shared

Kernel
Page table

Kernel mode

0x00000000 0xFF000000 0xFFFFFFFF
16MB
shared

User
Page table

User mode

Switch the page tables
before system calls

virtual
address

physical
address

0 16 MB 3936 MB End of memory

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

Mapped by user
page table

Mapped by kernel
page table

Mapped by both
user & kernel page tables Unmapped

Partition of Physical Memory
(Zone)

virtual
address

0xC0000000

This figure shows the partition of physical memory its
mapping to virtual address in 3G/1G layout

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM physical
address

0 16 MB 896 MB

0xF8000000 0xFFFFFFFF
vmalloc

area
kmap
area

Direct mapping Indirect mapping
Kernel

Page table

End of memory

Why not map kernel memory
indirectly?

Reasons for direct mapping
No changes of kernel page table for contiguous
allocation in physical memory
Faster translation between virtual and physical
addresses

Implications of direct mapping
kernel memory is not swappable

Kernel Virtual Address Space
linear address space (Bytes)LONGPERBITS __2

kernel
image

struct page
mem_map

the rest memory
(for page allocation)

pages
gap

vmalloc
address space

kmap
address space

fixed
mapping

pages
gap

page
gap

process
address space

direct-mapped physical memory VMALLOC_RESERVE at minimum

TASK_SIZE VMALLOC_OFFSET
2 x

PAGE_SIZE
LAST_PKMAP x

PAGE_SIZE __FIXADDR_SIZE

0 PAGE_OFFSET
0xC0000000

VMALLOC_START VMALLOC_END PKMAP_BASE FIXADDR_START FIXADDR_TOP

vmalloc address space
Noncontiguous physical memory allocation

kmap address space
Allocation of memory from ZONE_HIGHMEM

Fixed mapping
Compile-time virtual memory allocation

Memory Allocators in Linux
Description Used at functions

Boot
Memory
Allocator

1. A first-fit allocator, to allocate and free
memory during kernel boots

2. Can handle allocations of sizes smaller than a
page

System boot time alloc_bootmem()
free_bootmem()

Slab
Allocator

1. Deal with Internal fragmentation
(for allocations < page-size)

2. Caching of commonly used objects
3. Better use of the hardware cache

After mem_init(), at
which boot memory
allocator retires

kmalloc()

kfree()

Physical
Page
Allocator
(buddy system)

1. Page-size physical frame management
2. Good at dealing with external fragmentation

After mem_init(), at
which boot memory
allocator retires

alloc_pages()
__get_free_pages()

Virtual
Memory
Allocator

1. Built on top of page allocator and map
noncontiguous physical pages to logically
contiguous vmalloc space

2. Required altering the kernel page table
3. Size of all allocations <= vmalloc address space

1. Large allocation size
2. contiguous physical

memory is not available

vmalloc()

vfree()

Describing Physical Memory

Data Structures to Describe
Physical Memory

struct
pglist_data

struct zone
node_zones

zone_mem_map

struct page
mem_map

ZONE_DMA

ZONE_NORMAL

ZONE_HIGHMEM

zone_mem_map

zone_mem_map

has a data structure member
is a array of

is a pointer points to

struct page

struct page

struct page

. . .

struct page

struct page

All these data structures are initialized by free_area_init() at start_kernel()

Page Tables vs. struct pages

Page tables
Used by CPU memory management unit to map
virtual address to physical address

struct pages
Used by Linux to keep track of the status of all
physical pages
Some status (eg. dirty, accessed) is read from the
page tables.

Nodes

Designed for NUMA (Non-Uniform Memory
Access) machine
Each bank (The memory assigned to a CPU) is
called a node and is represented by struct
pglist_data

On Normal x86 PCs (which use UMA model),
Linux uses a single node (contig_page_data) to
represent all physical memory.

struct pglist_data

Type Name Description

struct zone [] node_zones Array of zone descriptors of the node

struct zonelist [] node_zonelists The order of zones that allocations are preferred from

int nr_zones Number of zones in the node

unsigned long node_present_pages Total number of physical pages in the node

int node_id Node ID (NID) of the node

struct pglist_data * pgdat_next Pointer to next node in a NULL terminated list

unsigned long node_spanned_pages Total size of physical page range, including holes

struct page * node_mem_map
This is the first page of the struct page array that
represents each physical frame in the node

struct bootmem_data * bdata Used by boot memory allocator during kernel initialization

unsigned long node_start_pfn The starting physical page frame number of the node

Zones
Because of hardware limitations, the kernel cannot treat all
pages as identical

Some hardware devices can perform DMA only to certain memory
address
Some architectures cannot map all physical memory into the kernel
address space.

Three zones in Linux, described by struct zone
ZONE_DMA

Contains pages capable of undergoing DMA
ZONE_NORMAL

Contains regularly mapped pages
ZONE_HIGHMEM

Contains pages not permanently mapped into the kernel address space

struct zone (1)

Type Name Description Notes

spinlock_t lock Spin lock protecting the descriptor

Kswapd

Kswapd

Page cache

Page cache

Page cache

unsigned long free_pages Number of free pages in the zone

unsigned long pages_min Minimum number of pages of the zone that should remain free

unsigned long
pages_low,

pages_high

Lower and upper threshold value for the zone’s page balancing
algorithm

spinlock_t lru_lock Spin lock protecting the following two linked lists

unsigned long
nr_active,

nr_inactive

The number of pages on the active_list and
inactive_list

struct
list_head

active_list,

inactive_list
Active and inactive lists (LRU lists) of pages in the zone

struct zone (2)

Type Name Description
struct free_area [] free_area Free area bitmaps used by the buddy allocator

wait_queue_head_t * wait_table
A hash table of wait queues of processes waiting on a page to
be freed

unsigned long wait_table_size The number of queues in the hash table

unsigned long wait_table_bits
The number of bits in a page address from left to right being
used as an index within the wait_table

struct per_cpu_pageset [] pageset
Per CPU pageset for order-0 page allocation
(to avoid interrupt-safe spinlock on SMP system)

struct pglist_data * zone_pgdat Points to the descriptor of the parent node

unsigned long zone_start_pfn The starting physical page frame number of the zone

char * name
The string name of the zone: “DMA”, “Normal”
or “HighMem”

unsigned long spanned_pages Total size of physical page range, including holes

unsigned long present_pages Total number of physical pages in the zone

struct page * zone_mem_map The first page in the global mem_map that this zone refers to

Pages

To keep track of all physical pages, all
physical pages are described by an array of
struct page called mem_map

ZONE_DMA
mem_map

ZONE_NORMAL
mem_map

ZONE_HIGHMEM
mem_map

page page page

mem_map (=contig_page_data.node_mem_map)

page page page.

struct page

Type Name Description

page_flag_t flags The status of the page and mapping of the page to a zone

atomic_t _count
The reference count to the page.
If it drops to zero, it may be freed

unsigned long private
Mapping private opaque data: usually used for
buffer_heads if PagePrivate set

struct list_head lru

Linked to LRU lists of pages if the page is in page cache
Linked to free_area lists if the page is free and is managed
by buddy allocator

struct address_space * mapping
Points to the address space of a inode when files or devices
are memory mapped.

pgoff_t index Our offset within mapping

Flags describing page status

Flag name Meaning

PG_locked The page is involved in a disk I/O operation

PG_error An I/O error occurred while transferring the page

PG_referenced
The page has been recently accessed for a disk I/O operation. This bit is used
during page replacement for moving the page around the LRU lists.

PG_uptodate When a page is read from disk without error, this bit will be set

PG_dirty This indicates if a page needs to be flushed to disk.

PG_lru The page is in the active or inactive page list

PG_active The page is in the active page list

PG_highmem The page frame belongs to the ZONE_HIGHMEM zone

PG_reserved The page frame is reserved to kernel code or is unusable

Translating kernel virtual address
Recall: memory in ZONE_DMA and ZONE_NORMAL is direct-
mapped and all page frames are described by mem_map array
Kernel virtual address -> physical address
Physical address -> struct page

Use physical address as an index into the mem_map array

#define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)
#define pfn_to_page(pfn) (mem_map + (pfn))
#define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT)

static inline unsigned long virt_to_phys(volatile void * address)
{

return __pa(address);
}

Boot Memory Allocator

The Flowchart of Initializing
All Memory Allocators

The first C function in the kernel The first process created by the kernel

setup_arch

start_kernel

mem_init free_initmem

init
process

paging_init

build_all_zonelists

Space occupied
by initialization
code is freed

setup_memory

1. Setup page table
2. Setup page allocator

Boot memory allocator retires
and all unreserved memory is
handed over to page allocator

1. Find all free memory
2. Setup boot memory allocator

time

Function call Create thread

Only boot memory allocator is available Only page allocator

mem_init()

Determining the size of each zone
Global variables Description
max_pfn The last page frame in the system. find_max_pfn()

determine the value by reading through the e820 map
from the BIOS

min_low_pfn the lowest PFN available (the end of kernel image)
max_low_pfn the end PFN of ZONE_NORMAL, determined by

find_max_low_pfn()

highstart_pfn,

highend_pfn

the start and end PFN of ZONE_HIGHMEM

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

max_pfn = highend_pfnmax_low_pfn = highstart_pfnmin_low_pfn

0 16 MB 896 MB

Data Structures for Boot Memory
Allocator

A struct bootmem_data for each node of memory

Type Name Description
unsigned long node_boot_start The starting physical address of the represented block

unsigned long node_low_pfn The end physical address in PFN (end of ZONE_NORMAL)

unsigned long last_success
The PFN of the start page of the last allocation. It is used
to speed up the search of a block of free memory.

void * node_bootmem_map
The location of the bitmap representing allocated or free
pages with each bit

unsigned long last_offset
The offset within the end page of the last allocation.
If 0, the page used is full.

unsigned long last_pos

The PFN of the end page of the last allocation. By using
this with the last_offset field, a test can be made to see
if allocations can be merged with the page used for the last
allocation rather than using up a full new page.

Example of boot memory
allocation

ZONE_DMA ZONE_NORMAL

Physical
pages

node_low_pfnnode_boot_start

.

last_pos last_offset

node_bootmem_map

Pages allocated are gray-colored and marked “1” in the bitmap

This partially free page is wasted!
Since boot memory allocator only
remembers partially free page of
the last allocation.

1 1 1 1 1 0 0 0 1 1 0 0 0. 0 0 0 0 0 0 0 0 0 0

init_bootmem() &
free_all_bootmem()

unsigned long init_bootmem(unsigned long start, unsigned long page)

Initialized Initialized contig_page_data.bdatacontig_page_data.bdata for page PFN between 0 and for page PFN between 0 and pagepage. The beginning of . The beginning of
usable memory is at the PFN usable memory is at the PFN startstart (for (for bootmembootmem bitmap). The entire bitmap is initialized to 1bitmap). The entire bitmap is initialized to 1

unsigned long free_all_bootmem()

Used at the boot Used at the boot allocatorallocator end of life. It cycles through all pages in the bitmap. For eacend of life. It cycles through all pages in the bitmap. For each h
unallocated page, the unallocated page, the PG_reservedPG_reserved flag in its flag in its structstruct pagepage is cleared, and the page is freed to is cleared, and the page is freed to
the physical page the physical page allocatorallocator ((____free_pagesfree_pages()()) so that it can build its free lists. The pages for) so that it can build its free lists. The pages for
boot boot allocatorallocator bitmap are freed toobitmap are freed too

Since there is no architecture independent way to detect
holes in memory, init_bootmem() initializes the entire
bitmap to 1. The bitmap will be updated by architecture
dependent code later.

reserve_bootmem() &
free_bootmem()

void reserve_bootmem(unsigned long addr, unsigned long size)

Marks the pages between the address Marks the pages between the address addraddr and and addraddr++sizesize reserved (allocated). Requests to reserved (allocated). Requests to
partially reserve a page will result in the full page being resepartially reserve a page will result in the full page being reservedrved

void free_bootmem(unsigned long addr, unsigned long size)

Marks the pages between the address Marks the pages between the address addraddr and and addraddr++sizesize as free. An important restriction is as free. An important restriction is
that only full pages may be freed. It is never recorded when a pthat only full pages may be freed. It is never recorded when a page is partially allocated, so, if only age is partially allocated, so, if only
partially freed, the full page remains reservedpartially freed, the full page remains reserved

Pages used by kernel code, bootmem bitmap are
reserved by calling reserve_bootmem()
free_bootmem() is used together with alloc_bootmem()

alloc_bootmem()

void * alloc_bootmem(unsigned long size)

Allocates Allocates sizesize number of bytes from number of bytes from ZONE_NORMALZONE_NORMAL. The allocation will be aligned to the L1 . The allocation will be aligned to the L1
hardware cache to get the maximum benefit from the hardware cachhardware cache to get the maximum benefit from the hardware cache.e.

void * alloc_bootmem_low(unsigned long size)

Allocates Allocates sizesize number of bytes from number of bytes from ZONE_DMAZONE_DMA. The allocation will be aligned to the L1 . The allocation will be aligned to the L1
hardware cache.hardware cache.

void * alloc_bootmem_pages(unsigned long size)

Allocates Allocates sizesize number of bytes from number of bytes from ZONE_NORMALZONE_NORMAL aligned on a page size so that full pages will aligned on a page size so that full pages will
be returned to the caller.be returned to the caller.

void * alloc_bootmem_low_pages(unsigned long size)

Allocates Allocates sizesize number of bytes from number of bytes from ZONE_DMAZONE_DMA aligned on a page size so that full pages will be aligned on a page size so that full pages will be
returned to the caller.returned to the caller.

Call Graph of alloc_bootmem()

alloc_bootmem alloc_bootmem_low alloc_bootmem_pages alloc_bootmem_low_pages

__alloc_bootmem_core

__alloc_bootmem

The core function:
__alloc_bootmem_core()

It linearly scans memory starting from preferred address for
a block of memory large enough to satisfy the allocation

Preferred address may be:
1. the starting address of a zone or
2. the address of last successful allocation

When a satisfied memory block is found, this new allocation
can be merged with the previous one if all of the following
conditions hold:

The page used for the previous allocation (bootmem_data.pos) is
adjacent to the page found for this allocation
The previous page has some free space in it
(bootmem_data.offset != 0)
The alignment is less than PAGE_SIZE

The Flowchart of Initializing
Boot Memory Allocator

setup_memory

find_max_pfn find_max_low_pfn init_bootmem register_bootmem_low_pages reserve_bootmem

time

Function call

Determine max_low_pfn,
the end of ZONE_NORMAL

free_bootmem
Reserve pages
needed by
kernel image
and bootmem
bitmap

read through the e820-map
and calls free_bootmem() for
each usable block of memory
to set the bitmap to 0

Initialize bootmem. All memory <
max_low_pfn is managed by bootmem
and is initially reserved (bitmap=1)

mem_init() -
Retiring the Boot Memory Allocator

Retiring boot memory allocator and free memory to page allocator

mem_init

For all unreserved pages, it does:
1. clear PG_reserved flag
2. Set page _count to 1
3. Call __free_page()

free_all_bootmem set_highmem_pages_init

one_highpage_init

page_is_ram ClearPageReserved __free_page

__free_page

It calls one_highpage_init()
for every page between
highstart_pfn and
highend_pfn

time

ClearPageReserved

Check e820-map to see if the
page is in RAM, not in a hole.

If the page is in RAM, do the
same 3 steps as
free_all_bootmem()

Function call

From Boot Memory Allocator to
Page Allocator

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

BIOS
e820-map

hole kernel image other

register_bootmem_low_pages()

Pass yellow-colored area to bootmem
__free_page()

(set_highmem_pages_init())
Pass brown-colored area to
page allocator

Bootmem
Allocator

__free_page() (free_all_bootmem())
Pass green-colored area to page allocator

Page
Allocator

Gray-colored area is free and allocable from page allocator

Physical Page Allocator

The Buddy System:
the Algorithm of the Page Allocator

An allocation scheme that combines free buffer coalescing
with a power-of-two allocator
Memory is split into blocks of pages where each block is a
power of two number of pages.
It create small blocks by repeatedly halving a large block and
coalescing adjacent free blocks whenever possible.
When a block is split, each half is called the buddy of the
other.

B C D D’ A’

<letter> and <letter>’ are buddies

cannot be buddies
since they alone cannot form a block

A

B’
C’

struct free_area

Type Name Description
struct list_head free_list A linked list of free page blocks

unsigned long * map A bitmap representing the state of a pair of buddies

i2

i2

The exponent for the power of two-sized block is referred to
as the order. An array of free_area of size MAX_ORDER is
maintained for orders from 0 to MAX_ORDER-1
free_area[i].free_list is a linked list of free blocks of

page size
free_area[i].map represents the allocation status of all
pairs of buddies of page size. Each time a buddy is
allocated or freed, the bit representing the pair of buddies is
toggled so that the bit is 0 if the pair of pages are both free
or both full and 1 if only one buddy is in use

Think in another way about the
meaning of maps in free_area

Each bit in the free_area[i].map tells if a pair
of buddies is in free_area[i].free_list

If a bit of the map is 0, the represented buddies
are not in the free list. It may be both allocated,
or both free and in the free list of higher order
If it is 1, exactly one of the buddies is in the free
list. It may be reunified with its buddy when it is
freed.

Example of the contents of maps
in free_area

physical memory
free_area[].free_list

Order

0

1

0

0

0

0

1

1

1

1

0

1

0

0

free_area[].map
0 1 20 1 2 012

free

allocated

Pseudo Code:
Allocating Pages in free_area

1. Get a block out from the free list of the desired-order
free area. If the area is empty, get it from order+1 free
area. Repeat this step until we get a block

2. Toggle the associated bit in the bitmap
3. If the block gotten is from a higher order free area,

halve it, keep the first half, add the second half to
order-1 free list and toggle the associated bit in the
bitmap. Repeat this step until we have a desired-size
block.

Pseudo Code:
Freeing Pages in free_area

1. For the block being freed, toggle the associated bit in
the free area’s bitmap. If the value of the bit before
the toggle is 0 (i.e. the buddy is still allocated), go to
step 3

2. Remove the buddy from the free list and merge it
with the block. Then carry the resulting block to
order+1 free area and repeat step 1 and 2.

3. Put the block into the free list.

The Flowchart of Initializing
Physical Page Allocator

Initialize page table and
setup page allocator

paging_init build_all_zonelists

time

Function call

pagetable_init

alloc_bootmem_low_pages

zone_sizes_init

free_area_init

Build a list of fallback zones for
each zone. When an allocation
cannot be satisfied, another
zone can be consulted

Initialize node and zone data
structure. (especially mem_map[]
and free_area[]) All pages All pages
are marked as reservedare marked as reserved

1. Compute zones_size[] from
max_low_pfn, highend_pfn

2. Call free_area_init(zones_size)

Allocate memory for page table
from boot memory alloactor

The Flowchart of free_area_init()
1. Call free_area_init_node(…,&contig_page_data,…)
2. Set global variable mem_map = contig_page_data.node_mem_map

free_area_init

Function call

free_area_init_node

alloc_bootmem_node free_area_init_core

1. Node data structure initialization!
(allocate memory from
bootmem for node_mem_map)

2. Call free_area_init_core() to
initialize zones

For each page in the zone:
1. Set page -> zone mapping
2. Set page _count = 0
3. Set PG_reserved flag

memmap_init 1. Zone data structure initialization!
2. Call memmap_init() to initialize
zone_mem_map[]

3. Initialize free_area[]

Initializing free_area[] for each zone

for (i = 0; ; i++) {
unsigned long bitmap_size;

INIT_LIST_HEAD(&zone->free_area[i].free_list);
if (i == MAX_ORDER-1) {

zone->free_area[i].map = NULL;
break;

}

bitmap_size = (size-1) >> (i+4);
bitmap_size = LONG_ALIGN(bitmap_size+1);
zone->free_area[i].map =
(unsigned long *) alloc_bootmem_node(pgdat, bitmap_size);

}

Since MAX_ORDER-1 is the highest
order, blocks at this order are not
merged. So free area map is not
needed.

size = number of pages in a zone

The calculation here (since Linux 2.4) is correct but hard to understand. It may be a little larger than
the actual bytes needed. It should be bitmap_sizebitmap_size = = LONG_ALIGNLONG_ALIGN((((((sizesize >> (i+1)>> (i+1))) + 7+ 7)) >> 3>> 3)).
Theii is the order of the free area. The +1+1 is because the buddy system uses a single bit to represent
two blocks. (size >> i+1)(size >> i+1) is the number of bits in the bitmap. This value is shifted down by 33 to
get the number of bytes, but we need to have a +7+7 first to round up to byte size.

Per-CPU Page Sets in Linux 2.6
CPU 1 CPU 2

local_irq
disable

spin_lock

spin_unlock

per_cpu
Pageset

Recall: zone[].lock spinlock protects
the free_area from concurrent access

Lock contention between multiple CPUs
may degrade the performance

Linux 2.6 reduces the number of times
acquiring this spinlock by introducing
a per CPU page set (per_cpu_pageset)

It stores only order-0 pages since higher
order allocations are rare
Order-0 block allocation requires no
spinlock being held. But if the page set is
low, a number of pages will be allocated
in bulk with the spinlock held
Side effect: splits and coalescing of blocks
for order-0 allocation are delayed

free_area

local_irq
disable

local_irq
enable

local_irq
enable

order-0
allocation

order>0
allocation

The Call Graph of __alloc_pages()

Function call

__alloc_pages

buffered_rmqueue wakeup_kswapd try_to_free_pages

rmqueue_bulk prep_new_page

expand

__rmqueue

Obtain a number of order-x pages
from free_area[], all under a single
hold of the zone lock, for efficiency

For SMP efficiency, order-0
allocation gets page from a
per cpu buffer. If the buffer is
low, it is refilled with batch
number of order-0 pages first.
order>0 allocation is always
satisfied from free_area[]
directly.

Do the hard work of removing an
element from free_area[]

The core function for page allocation. It goes
through the zonelist finding a zone to allocate from
(buffered_rmqueue()). If the memory is low, it
wakes up kswapd to begin freeing up pages, and,
if the caller of the function can wait, it does the
work of kswapd itself (try_to_free_pages()).

If the block gotten has a higher order,
split put the second half back into free
area, recursively (expand())

Initialize page flags and set
page _count = 1 for pages
about to be returned

The Call Graph of __free_pages()

__free_pages

free_hot_page __free_pages_ok

free_pages_bulk

free_hot_cold_page

__free_pages_bulk

The core function for freeing pages. It set page
_count = 0. If the block to be freed is order-0, it
is placed in the per-cpu pagesets
(free_hot_page()). Higher-order block is always
freed to free_area[] (__free_pages_ok())

There are 2 page sets per
CPU. One is for hot pages
and the other is for cold
pages. __free_pages()
always free order-0 block
into the hot page set. This is just a wrapper which, in

turn, calls free_pages_bulk() to
free a order-x block.

This function frees a list of blocks,
which are in the same zone, of same
order. It goes through the list and call
__free_pages_bulk() for each block.

This function does the hard work of
putting a block into free_area[]. If the
buddy of the block is also free, merge
them into larger block.

This function frees a
order-0 page into the hot
or cold page set. If the
page count of the page
set for the running CPU
has reached the high
watermark, a number of
pages are freed in bulk
from the page set to
free_area[]

Function call

Physical Pages Allocation API

struct page * alloc_page(unsigned int gfp_mask)

Allocates a single page and return a pointer to its Allocates a single page and return a pointer to its pagepage structure.structure.

struct page * alloc_pages(unsigned int gfp_mask, unsigned int order)

Allocates Allocates 22 pages and return a pointer to the first pagepages and return a pointer to the first page’’s s pagepage structure.structure.

unsigned long __get_free_page(unsigned int gfp_mask)

Allocates a single page and return a pointer to its virtual addrAllocates a single page and return a pointer to its virtual address.ess.

unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order)

Allocates Allocates 22 pages and return a pointer to the first pagepages and return a pointer to the first page’’s virtual address.s virtual address.

unsigned long __get_dma_pages(unsigned int gfp_mask, unsigned int order)

Allocates Allocates 22 pages from pages from ZONE_DMAZONE_DMA and return a pointer to the first pageand return a pointer to the first page’’s virtual address.s virtual address.

unsigned long get_zeroed_page(unsigned int gfp_mask)

Allocates a single page, zero its contents, and return a pointerAllocates a single page, zero its contents, and return a pointer to its virtual address.to its virtual address.

orderorder

orderorder

orderorder

Physical Pages Free API

void __free_page(struct page *page)

Frees a single page.Frees a single page.

void __free_pages(struct page *page, unsigned int order)

Frees Frees 22 pages from the given page.pages from the given page.

void free_page(unsigned long addr)

Frees a single page from the given virtual address.Frees a single page from the given virtual address.

void free_pages(unsigned long addr, unsigned int order)

Frees Frees 22 pages from the given virtual address.pages from the given virtual address.

orderorder

orderorder

There are only two core function for page allocation and free,
but two namespaces to them.

Pointer to struct page: alloc_page*() and __free_page*()
Virtual address: *get*page*() and free_page*()

The Call Graph of
Physical Pages Allocation API

__alloc_pages

alloc_pages_node

alloc_pagesalloc_page

__get_free_pages

page_address

__get_free_page __get_dma_pages

get_zeroed_page

clear_page

Translate a struct page
to a virtual address

Function call struct page basedvirtual address based

The Call Graph of
Physical Pages Free API

__free_pages

__free_page

free_page

free_pages

virt_to_page

Function call struct page basedvirtual address based

Get Free Page (gfp_mask) Flags
3 categories of flags

Zone modifiers
Specify from where to allocate memory

Action modifiers
Specify how the kernel is supposed to allocate the requested
memory

Type flags
Specify a combination of action and zone modifiers as needed by
a certain type of memory allocation

Don’t use zone or action modifiers directly. Use
type flags if there are suitable type flags.

gfp_mask: Zone Modifiers
The kernel allocates memory from ZONE_NORMAL if none of the
zone modifiers are specified
If the memory is low, the allocations can fall back on another zone
according to the fallback zonelists
The fallback order

ZONE_HIGHMEM->ZONE_NORMAL->ZONE_DMA
Don’t use __GFP_HIGHMEM with *get*page*() or kmalloc()

They may return an invalid virtual address since the allocated pages are not
mapped in the kernel’s virtual address space

Flags Description
__GFP_DMA Allocate only from ZONE_DMA
__GFP_HIGHMEM Allocate from ZONE_HIGHMEM or ZONE_NORMAL

gfp_mask: Action Modifiers

Flags Description
__GFP_WAIT The allocator can sleep
__GFP_HIGH The allocator can access emergency pools of memory
__GFP_IO The allocator can start disk I/O
__GFP_FS The allocator can start filesystem I/O
__GFP_COLD The allocator should use cache cold pages
__GFP_NOWARN The allocator will not print failure warnings
__GFP_REPEAT The allocator will repeat the allocation if it fails
__GFP_NOFAIL The allocator will indefinitely repeat the allocation
__GFP_NORETRY The allocator will never retry if the allocation fails
__GFP_NOGROW Used internally by the slab layer

gfp_mask: Type Flags
Flags Description (AC = Allocator) Modifier flags
GFP_ATOMIC AC is high priority and must not sleep. This flag is used in

interrupt handlers, bottom halves, and other situations
where you cannot sleep

AC may block, but won’t start disk I/O. This flag is used
in block I/O code when you cannot cause more disk I/O

AC may block and start disk I/O, but won’t start
filesystem I/O. This flag is used in filesystem code when
you cannot start another filesystem operation

This is for normal allocation. AC may block. This flag is
used in process context code when it is safe to sleep

This is for normal allocation. AC may block. This flag is
used to allocate memory for user-space processes.

AC may block. This flag is used to allocate memory from
ZONE_HIGHMEM for user-space processes.

Device drivers that need DMA-able memory use this flag,
usually in combination with one of the above.

GFP_NOIO __GFP_WAIT

__GFP_HIGH

GFP_NOFS (__GFP_WAIT | __GFP_IO)

GFP_KERNEL (__GFP_WAIT | __GFP_IO |
__GFP_FS)

GFP_USER (__GFP_WAIT | __GFP_IO |

__GFP_FS)

GFP_HIGHUSER (__GFP_WAIT | __GFP_IO |
__GFP_FS |__GFP_HIGHMEM)

GFP_DMA __GFP_DMA

Reference

Understanding the Linux Virtual Memory
Manager, Mel Gorman, Prentice Hall, 2004
Understanding the Linux Kernel, Bovet &
Cesati, O’REILLY, 2002
Linux Kernel Development, Robert Love,
Sams Publishing, 2003

	Physical Memory Management in Linux
	Table of Contents
	Virtual Address Space and Memory Allocators in Linux
	Linux Virtual Address Layout
	Linux Virtual Address Layout
	Page Table Switch in a4G/4G Configuration
	Partition of Physical Memory (Zone)
	Why not map kernel memory indirectly?
	Kernel Virtual Address Space
	Memory Allocators in Linux
	Describing Physical Memory
	Data Structures to Describe Physical Memory
	Page Tables vs. struct pages
	Nodes
	struct pglist_data
	Zones
	struct zone (1)
	struct zone (2)
	Pages
	struct page
	Flags describing page status
	Translating kernel virtual address
	Boot Memory Allocator
	The Flowchart of Initializing All Memory Allocators
	Determining the size of each zone
	Data Structures for Boot Memory Allocator
	Example of boot memory allocation
	init_bootmem() &free_all_bootmem()
	reserve_bootmem() & free_bootmem()
	alloc_bootmem()
	Call Graph of alloc_bootmem()
	The core function:__alloc_bootmem_core()
	The Flowchart of Initializing Boot Memory Allocator
	mem_init() -Retiring the Boot Memory Allocator
	From Boot Memory Allocator to Page Allocator
	Physical Page Allocator
	The Buddy System:the Algorithm of the Page Allocator
	struct free_area
	Think in another way about the meaning of maps in free_area
	Example of the contents of maps in free_area
	Pseudo Code: Allocating Pages in free_area
	Pseudo Code: Freeing Pages in free_area
	The Flowchart of InitializingPhysical Page Allocator
	The Flowchart of free_area_init()
	Initializing free_area[] for each zone
	Per-CPU Page Sets in Linux 2.6
	The Call Graph of __alloc_pages()
	The Call Graph of __free_pages()
	Physical Pages Allocation API
	Physical Pages Free API
	The Call Graph of Physical Pages Allocation API
	The Call Graph of Physical Pages Free API
	Get Free Page (gfp_mask) Flags
	gfp_mask: Zone Modifiers
	gfp_mask: Action Modifiers
	gfp_mask: Type Flags
	Reference

