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The purpose of Disk Caches

To improve system performance by saving data 
in disk caches to reduce disk accesses
Several kinds of targets can be cached in Linux:

Page CacheLogical blocksFile blocks
dentry cachedentry objectsInode / Directory entries
Buffer cachePhysical blocksDisk blocks

CachePropertyTarget

We will not cover dentry cache in this talk!



Traditional design of the disk 
cache

Buffer Cache
Cache disk blocks
Index key: (dev_t, blk_no)

Disadvantage
Cannot cache NFS
Disintegrate from memory 
paging

Filesystems

disk disk

Buffer
cache

Read() or write()



Hybrid design of the disk caches

Page cache
For memory-mapped I/O
Cache regular file or block 
device file
Index key: (address_space, 
page_offset)

Disadvantage
Data synchronization between 
the two caches
Waste memory

Filesystems

disk disk

Buffer
cache

Page cache

Memory-mapped I/O

regular I/O
using read()
or write()



Modern design of the disk cache

A unified page cache

Filesystems

disk disk

Page cache

Memory-mapped I/O

regular I/O
using read()
or write()



Evolution of disk caches in Linux
2.0 – 2.2

Buffer cache and page cache
Data synchronization is needed

2.4
Buffer cache is a subset of page 
cache, but still maintains its own 
hash table
No data synchronization

2.6
Buffer cache hash table removed
Buffer cache API built on top of 
page cache

Page cache

buffer cache

Page cache

buffer cache

I

I

I

I

Page cache

buffer cache

I



Use of the buffer cache and page cache

Write a swapped-out pagePageNoneswap_writepage()

Read a swapped-out pagePageNoneswap_readpage()

Access a memory-mapped filePageNonefilemap_nopage()

Write a block device filePagewrite()generic_file_write()

Read a block device filePageread()generic_file_read()

Write an ext2 regular filePagewrite()generic_file_write()

Read an ext2 regular filePageread()generic_file_read()

Read an ext2 inodeBufferNone__bread()

Read an ext2 superblockBufferNone__bread()

I/O operationCacheSystem callKernel function



How to integrate the two cache?

Enabling keys are:
address_space

To identify buffers and pages in the page cache

Buffer pages
Buffers in a page are mapped to contiguous blocks on 
the device

Block device file systems
Pseudo inode and address_space for block device



Design Concepts of address_space
To identify a page in the page cache:

address_space + page_offset within the file
To establish the relationship between pages and 
methods that operate on the pages
It can represent a regular file, a block device file, or 
a swap space in the page cache
A separation between the "control plane" and the "data 
plane", to use a networking analogy*. 

address_space: data related stuff
inode: control/metadata/security stuff

* Quoted from a mail by Andrew Morton in the Linux-MM mailing list



The fields of the address_space
object

a list of buffers for the owning inodeprivate_liststruct list_head

lock protecting the private_list of other 
mappings which have listed buffers from this 
mapping onto themselves

private_lockspinlock_t

memory allocator flags for owner’s pagesflagsunsigned long

readahead information and congestion state of 
the backing device

backing_dev_infostruct backing_dev_info *

address_space of the backing deviceassoc_mappingstruct address_space *

methods that operate on owner’s pagesa_opsstruct
address_space_operations *

total number of owner’s pagesnrpagesunsigned long

lock protecting i_mmapi_mmap_lockspinlock_t

tree of private and shared mappings (VMA)i_mmapstruct prio_tree_root

lock protecting page_treetree_lockspinlock_t

radix tree of all pages of the ownerpage_treestruct radix_tree_root

owner: inode or block device’s inodehoststruct inode *

DescriptionFieldType



The scenario of the page cache
Page cache

file1
address_space

/dev/hda
address_space

file2
address_space

swapper_space
address_space

page

Radix tree



Page cache related fields in 
struct page

Mapping private opaque data: usually used for buffer_heads if PG_private; 
used for swp_entry_t if PG_swapcacheprivateunsigned long

If low bit clear, points to inode address_space, or NULL. If page 
mapped as anonymous memory, low bit is set, and it points to anon_vma
object. If the page does not belong to the page cache, page_mapping()
return NULL.

mapping
struct
address_space *

Our offset within mapping, in page-size units.indexpgoff_t

The reference count to the page. When the page is added to the page cache, 
add 1 to this counter._countatomic_t

The status of the page. When the page is in swap cache, PG_swapcache
flag is setflagspage_flag_t

DescriptionNameType



Page cache handling functions
int add_to_page_cache(struct page *page, struct address_space *mapping, 

pgoff_t offset, int gfp_mask)

Add newly allocated pages to page cache. It sets Add newly allocated pages to page cache. It sets mappingmapping and and indexindex fields of the fields of the pagepage

structure. The structure. The gfp_maskgfp_mask is for memory allocation of is for memory allocation of radix_tree_noderadix_tree_node

void remove_from_page_cache(struct page *page)

Remove the specified page from page cache.Remove the specified page from page cache.

struct page *find_get_page(struct address_space *mapping, 
unsigned long offset)

Find a page in the page cache and increase the reference count oFind a page in the page cache and increase the reference count of the page atomically.f the page atomically.

struct page *find_or_create_page(struct address_space *mapping, 
unsigned long index, unsigned int gfp_mask)

Find a page in the page cache. If the page is not present, a newFind a page in the page cache. If the page is not present, a new page is allocated using page is allocated using gfp_maskgfp_mask

and is added to the page cache and to the VM LRU list. The returand is added to the page cache and to the VM LRU list. The returned page is locked and has its ned page is locked and has its 
reference count incremented.reference count incremented.



Radix tree
Searching into page cache should be a very fast 
operation because it takes place for almost all disk 
I/O.

Hash table in Linux 2.4
Radix tree in Linux 2.6

Radix tree is another dictionary structure with 
operations like: 

Insert, delete, lookup
Time complexity: O(1) 



Radix tree example

height=3
*rnode

radix_tree_root

count=2
*slot[64]

count=1
*slot[64]

count=1
*slot[64]

count=1
*slot[64]

count=1
*slot[64]

Page
Index=0x2000

Page
Index=0x3001

0   1    2    3    4              63
…

… …

… …

RADIX_TREE_MAP_SHIFT = 6
RADIX_TREE_MAP_SIZE = 2**6 = 64

0x2000 
= 0010 000000 000000b

0   1    2    3    4              63

0   1    2    3    4              63 0   1    2    3    4              63

0   1    2    3    4              63



Radix tree structure
struct radix_tree_root {

unsigned int height;
int gfp_mask;
struct radix_tree_node *rnode;

};

struct radix_tree_node {
unsigned int count;
void *slots[RADIX_TREE_MAP_SIZE];
unsigned long tags[RADIX_TREE_TAGS][RADIX_TREE_TAG_LONGS];

};

#define RADIX_TREE_MAP_SHIFT 6
#define RADIX_TREE_TAGS 2
#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
#define RADIX_TREE_TAG_LONGS ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / 

BITS_PER_LONG)
#define PAGECACHE_TAG_DIRTY 0
#define PAGECACHE_TAG_WRITEBACK 1

1. A page in the page cache has two tags, indicating if it’s dirty or under writeback.
2. A slot is tagged dirty or writeback if any pages of the slot are dirty or under writeback.



Radix tree operations
int radix_tree_insert(struct radix_tree_root *root, unsigned long index, 

void *item)

Insert an Insert an itemitem into the radix tree into the radix tree rootroot at position at position indexindex. Return 0 on success.. Return 0 on success.

void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)

Remove the item at Remove the item at indexindex from the radix tree rooted at from the radix tree rooted at rootroot. Return the address of the deleted item, . Return the address of the deleted item, 
or NULL if it was not present.or NULL if it was not present.

void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)

Return the item at the position Return the item at the position indexindex in the radix tree in the radix tree rootroot..

void *radix_tree_tag_set(struct radix_tree_root *root, unsigned long index, 
int tag)

Set the search Set the search tagtag corresponding to corresponding to indexindex in the radix tree. From the in the radix tree. From the rootroot all the way down to the all the way down to the 
leaf node. Return the address of the tagged item.leaf node. Return the address of the tagged item.



Radix tree operations
void *radix_tree_tag_clear(struct radix_tree_root *root, 

unsigned long index, int tag)

Clear the search Clear the search tagtag corresponding to corresponding to indexindex in the radix tree in the radix tree rootroot. If this causes the leaf node to . If this causes the leaf node to 
have no tags set then clear the tag in the nexthave no tags set then clear the tag in the next--toto--leaf node, etc. Return the address of the tagged item leaf node, etc. Return the address of the tagged item 
on success, else NULL.on success, else NULL.

unsigned int radix_tree_gang_lookup(struct radix_tree_root *root, 
void **results, unsigned long first_index, unsigned int max_items)

Performs an indexPerforms an index--ascending scan of the tree ascending scan of the tree rootroot for present items, starting from for present items, starting from first_indexfirst_index. . 
Places them at Places them at *results*results and returns the number of items which were placed at and returns the number of items which were placed at *results*results. . 
max_itemsmax_items limits the number of items can be returned.limits the number of items can be returned.

unsigned int radix_tree_gang_lookup_tag(struct radix_tree_root *root,
void **results, unsigned long first_index, unsigned int max_items, int tag)

Performs an indexPerforms an index--ascending scan of the tree ascending scan of the tree rootroot for present items which have the tag indexed by for present items which have the tag indexed by 
tagtag set, starting from set, starting from first_indexfirst_index. Places the items at . Places the items at *results*results and returns the number of items and returns the number of items 
which were placed at which were placed at *results*results. . max_itemsmax_items limits the number of items can be returned.limits the number of items can be returned.



Buffer cache data structures

Buffer_head to describe buffers
Block device filesystem help identify buffers 
in the page cache

bd_inode->address_space to represent buffers in 
page cache



Data structure of the buffer_head

struct buffer_head {
/* First cache line: */
unsigned long b_state; /* buffer state bitmap (see above) */
struct buffer_head *b_this_page; /* circular list of page's buffers */
struct page *b_page; /* the page this bh is mapped to */
atomic_t b_count; /* users using this block */
u32 b_size; /* block size */

sector_t b_blocknr; /* block number */
char *b_data; /* pointer to data block */

struct block_device *b_bdev;
bh_end_io_t *b_end_io; /* I/O completion */
void *b_private; /* reserved for b_end_io */
struct list_head b_assoc_buffers; /* associated with another mapping */

};



State of buffers
enum bh_state_bits {

BH_Uptodate, /* Contains valid data */
BH_Dirty, /* Is dirty */
BH_Lock, /* Is locked */
BH_Req, /* Has been submitted for I/O */

BH_Mapped, /* Has a disk mapping */
BH_New, /* Disk mapping was newly created by get_block */
BH_Async_Read, /* Is under end_buffer_async_read I/O */
BH_Async_Write, /* Is under end_buffer_async_write I/O */
BH_Delay, /* Buffer is not yet allocated on disk */
BH_Boundary, /* Block is followed by a discontiguity */
BH_Write_EIO, /* I/O error on write */
BH_Ordered, /* ordered write */
BH_Eopnotsupp, /* operation not supported (barrier) */

BH_PrivateStart,/* not a state bit, but the first bit available
* for private allocation by other entities
*/

};



Dirty buffer lists of inode

Inode->i_data->private_list

struct inode {
…

struct address_space *i_mapping;
struct address_space i_data;

…
}

i_data is "pages read/written by this inode" 
i_mapping is "whom should I ask for pages?" 

IOW, everything outside of individual filesystems should use the latter. 
They are same if (and only if) inode owns the data. CODA (or anything that 
caches data on a local fs) will have i_mapping pointing to the i_data of 
inode it caches into. Ditto for block devices if/when they go into pagecache -
we should associate pagecache with struct block_device, since we can have 
many inodes with the same major:minor. IOW, ->i_mapping should be pointing 
to the same place for all of them. 



Dirty pages and buffers of a inode

inode address_space radix_tree

buffer_head

i_mapping tree_root

private_list

buffer_head

buffer_head

b_assoc_buffers

data

metadata



Buffer pages

private



Buffer cache handling functions

grow_buffers(bdev,block,size)
__getblk(bdev,block,size)



Block I/O and Page I/O
Block I/O

Read 1 block at a time
Example:

__bread(): for reading superblock and inode
Page I/O

Read 1 or several pages at a time
Misnamed “Async I/O” in Linux
Example:

generic_file_read(), generic_file_write(): for regular file, block 
device file read/write
filemap_nopage(): access to memory-mapped file



__bread()

__bread(struct block_device *bdev, sector_t block, int size)
{

struct buffer_head *bh = __getblk(bdev, block, size);

if (!buffer_uptodate(bh))
bh = __bread_slow(bh);

return bh;
}



__bread()

static struct buffer_head *__bread_slow(struct buffer_head *bh)
{

lock_buffer(bh);
if (buffer_uptodate(bh)) {

unlock_buffer(bh);
return bh;

} else {
get_bh(bh);
bh->b_end_io = end_buffer_read_sync;
submit_bh(READ, bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh))

return bh;
}
brelse(bh);
return NULL;

}



__bread()

void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
{

if (uptodate) {
set_buffer_uptodate(bh);

} else {
/* This happens, due to failed READA attempts. */
clear_buffer_uptodate(bh);

}
unlock_buffer(bh);
put_bh(bh);

}



How do filesystems use page cache?

Types of I/Os using page cache
Regular file read, write
Block device file read, write
Memory mapped read, write

Types of I/Os without page cache
Direct I/O



generic_file_read()

This function is used for both regular file and block 
device file read.
generic_file_read()

do_generic_mapping_read()
mapping->a_ops->readpage(filp, page)

Ext2: readpage = ext2_readpage
blkdev: readpage = blkdev_readpage
They are just wrapper functions which invokes 
mpage_readpage() or block_read_full_page() 



Trace these functions

do_generic_mapping_read()
block_read_full_page()
mpage_readpage()



Writing Dirty Pages to Disk

When to write?
Too many dirty pages in memory
Periodic write back for safety
Memory not enough
User request (fsync(), sync(), msync())

Who is responsible for the write out?
pdflush - background writeout operation
pdflush – kupdate operation
kswapd, try_to_free_pages



Writing Dirty Pages to Disk

What to write?
Dirty process page (swap out)
Dirty file or directory data page
Dirty memory mapped pages
Dirty filesystem inode
Dirty filesystem indirect blocks (ex: ext2, ext3)
Dirty filesystem superblocks



Writing Dirty Pages to Disk
How to keep track of dirty pages, dirty buffers 
and dirty metadata?

PS: for memory mapped file, Kernel knows whether a page 
is a dirty page if and only if user called msync() or kswapd
try to swap out, which scan the page table and update 
corresponding page’s dirty flag

dirty page tag in 
swapper_space’s radix tree

dirty page list in swapper_spaceprocess dirty swap pages

flag at superblock structuredirty filesystem superblocks

per address_space dirty 
buffer lists (private_list) why?

per inode and systemwide dirty 
buffer lists

dirty filesystem indirect 
blocks

dirty inode list at filesystem superblock structuredirty filesystem inodes

per address_space
dirty page list

memory-mapped files(*)

dirty page tag in every 
address_space’s radix tree

per inode and systemwide dirty 
buffer lists

regular
block device files

Linux 2.6Linux 2.4



Query cache

Query cacheQuery cache

Layers of source code of 
reading and writing pages

sys_sync() sys_fsync() pdflush()

fs-writeback.c

page-writeback.c

mpage.c

buffers.c

sync_inodes()

sync_mapping_buffers()

sync_inode() writeback_inodes()

do_writepages()

mpage_writepages()

sys_read() sys_write()

filemap.cgeneric_file_read() generic_file_write()

mpage_readpage()

submit_bio()

submit_bh()

ll_rw_blk.c

ll_rw_block()

block_read_full_page() block_write_full_page()

__sync_single_inode()

write_inode()

filemap_fdatawrite()



Scenario of reading a file from 
page cache – generic_file_read()
1. Check page cache and the 

corresponding pages do not 
exist, allocate free pages and 
add them to page cache

2. Invoke mpage_readpages() 
to read from disk

3. First page not contiguous on 
disk, invoke 
block_read_full_page() to 
read a block at a 
time(submit_bh())

4. Second page is contiguous, 
read via submit_bio() to read 
4 block at once

Page cache

Disk

1 2 3 4
5 6 7 8



pdflush
Thread pool

Dynamic add or remove threads in thread pool if thread is idle or 
pool is empty for more than 1 second

2 kinds of operations
background_writeout

write until dirty pages / total free pages < background_thresh
wb_kupdate

Write dirty pages older than 30 seconds.
pdflush_operation()

Wakeup a pdflush thread and get it to do the work assigned
wakeup_bdflush()

Use pdflush_operation() to wakeup a pdflush thread to do 
background_writeout



What are memory mapped files?

A memory region that is associated with some 
portion of a regular file on a block device

Access to a byte within a page of the memory region is 
translated into an operation on the corresponding byte of 
the file

virtual memory

file on disk



Example
int fd;
char *data;
fd = fopen(...);
data = mmap(...);

data[x]

content of file:

offset x



Types of memory mapping
Shared

write operation changes file on the disk
changes visible to all other processes that map the same 
file

Private
meant to be used for read only
copy on write
writing stops mapping a page to the file

a file can be mapped private and shared at the same 
time



Memory-mapping data structures

A memory mapping is represented by:
inode object of the file
address_space object of the file
vm_area_struct descriptor for each mapping of 
the file
file object for each mapping of the file
page descriptor for each frame assigned to the 
memory region



data structure representing a 
virtual memory area

mm_struct

mmap

mm_rb

pgd

map_count

rss

...

vm_area_struct

vm_mm

vm_start

vm_end

vm_flags

vm_next

vm_file

vm_next_share

vm_pprev_share

vm_pgoff

vm_ops

vm_raend

vm_area_struct vm_area_struct

Virtual Mem

0 GB 4 GB3 GB



Data structures for file memory 
mapping



mmap()
Parameters:

file descriptor
offset inside the file
length of the file portion
flags (either MAP_SHARED or MAP_PRIVATE)
set of permission

PROT_READ
PROT_WRITE
PROT_EXEC

optional linear address

Returns: linear address of first location of the memory region



MAP_PRIVATE:
copy on write – no changes

MAP_SHARED:
changes will be saved

MAP_FIXED:
forces to use the specified address

MAP_ANON or MAP_ANONYMOUS:
mapping not connected to a file
memory region initialized with zeros



mmap() Details

inode

vm_area_struct

vm_start

vm_end

vm_flags

vm_file

vm_ops

address_space

• File mappable?

• vm_area_struct created

• File access rights?

• Set vm_flags and vm_file

• Init nopage()

i_mmap / i_mmap_shared



Destroying a Memory Mapping

System call to destroy a memory mapping: munmap()

Parameters:
address
length

It is possible to either remove or reduce the size of a memory region.

Notes:
removes the memory region from the address_space object
hole inside a region => two smaller regions are created



Classifying the page faults
- do_page_fault()

HH
OO

HH
text/heap/stackin VMA

other
vmalloc area

not in 
VMA other

stack

kernel 
space

user 
space

CPU mode

Fault address

KK

user 
mode

kernel mode

OO

VV

O or KO or K

system 
call

kernel 
thread

interrupt 
handler

KK = send SIGSEGV signal to process
HH = If permission is okay, called handle_mm_fault()
OO = print Oops message and kill current process
VV = handle the vmalloc fault by fixing page table



Classifying the page faults
- handle_pte_fault()

Shared page – Copy on write

The value in page table entry is
the index of the swappd-out page
In swap space

Anonymous page or file-mapped page

If present bit = 0 in the page table entry
If page table entry = NULL

do_no_page()
Else

do_swap_page()

Else
If this is a write access and page table entry write 
bit = 0

do_wp_page()



do_no_page()

Anonymous page
vma->ops = NULL
do_anonymous_page()



do_no_page()

File-mapped page
filemap_nopage() to get the requested page
if this a write access and the vma’s
VM_SHARED flag off

do an early C-O-W break (allocate new page and copy 
the content of the requested page to the new page)

Set page table entry!



Filemap_nopage()

Invokes find_get_page() to find the page in 
the page cache
If the page is not in the page cache, use 
page_cache_read() to read it from disk
The page is in the page cache. If the page is 
not up to date, invoke a_ops->readpage()
The page is up to date. mark page accessed 
and return the page.



TAS

vm_area_struct
access

1 4 5

4 1 5RAM

file 1 2 3 4 5 6 7 8

Page Fault

2

2

• vm_area_struct->vm_ops->nopage() loads page from disk or cachedo_no_page:

• Page table entries updated



TAS

vm_area_struct
write

access

1 4

4 1 2RAM

file 1 2 3 4 5 6 7 8

Page Fault

2

2

copy on write



The purpose of swapping

More memory
Expand the address space effectively usable by a 
process
Expand the amount of RAM to load more 
processes

Better memory utilization
swap out unused pages and use the RAM for disk 
cache.



Swapping issues to be considered
What kind of page can be swap out?

in fact, this is 
anonymous page

vFile mmap’ed
(private and modified)

vFile mmap’ed
(shared and modified)

vIPC shared
vFile mmap’ed (clean)

Heap, stackvAnonymous
(private or shared)

What to do?Action
Type

Note

writebackdiscardswap out



Swapping issues to be considered
How to distribute pages in the swap areas

Cluster swap pages by allocating them sequentially
Minimize disk seek time

Swap area priority
Faster swap area get a higher priority
Round-robin among swap areas with the same priority

How to select the page to be swapped out
LRU approx. – second chance algorithm
Active and inactive lists

When to perform page swap out
kswapd is activated whenever the number of free pages falls below a 
predefined threshold
alloc_pages() cannot be satisfied



Swap Area 

May be implemented as a disk partition or as a file
Several different swap areas may be defined 

spread among several disks so as to use them 
concurrently

Each swap area consists of a sequence of page slots. 
The first page slot is used to store some information 
(swap header) about the swap area



Swap header

Up to 637 numbers specifying the location of 
defective page slotsbadpagesunsigned int [637]

Padding bytespaddingunsigned int [125]

Last page slot that is effectively usablelast_pageunsigned int

Number of defective page slots nr_badpagesunsigned int

“SWAP-SPACE” or “SWAPSPACE2”magicchar [10]

Swap algorithm versionVersionunsigned int

Not used. May store partition information, disk 
labels, etc.bootbitsChar [1024]

DescriptionNameType

header
page
slot

…Swap area



Swap Area Descriptor (1)

Size of swap area in pagesmaxunsigned long

Number of page slots left in this clustercluster_nrunsigned int

Swap area priorityprioint

Number of usable page slotspagesint

The index of the lowest possibly-free page slotlowest_bitunsigned int

The index of the highest possibly-free page slothighest_bitunsigned int

Array of counters, one for each page slotswap_mapunsigned short *

The starting index of next search in clustercluster_nextunsigned int

File pointer to swap file (regular or block device)swap_filestruct file *

The block device the swap file resides onbdevstruct block_device *

The index in swap_info array of next swap areanextint

Swap area descriptor spinlocksdev_lockspinlock_t

Swap area flags (SWP_USED,SWP_WRITEOK)flagsunsigned int

DescriptionNameType



Swap Area Descriptor (2)

Last extent that was searchedcurr_swap_extentstruct swap_extent *

Number of extents in the listnr_extentsint

List head for extents in the swap areaextent_liststruct list_head

DescriptionNameType



Swap Area Data Structures

Swap area
descriptor

Swap area

…

…

Free slot Occupied slot Defective slot

032768230132768 … 0

swap_map

swap_info

nr_swapfiles : index of last array elements that contains
a used swap area descriptor

swap_list : sorted by the swap area priority
.head              : index of the first list element
.next              : index of the next swap area to be used

nr_swap_pages : number of free slots in all swap areas
total_swap_pages: total number of nondefective slots 

in all swap areas

Number of owners



Swap extents
Extents map a contiguous range of pages in the 
swap area into a contiguous range of disk blocks.
An ordered list of swap extents is built at swapon
time and is then used at swap_writepage / 
swap_readpage time for locating where on disk a 
page belongs.
For block devices, there will only be one swap 
extent, and it will not improve performance. But it 
can make a large difference with swap files, which is 
not necessary contiguous on disks and will have 
multiple extents.



Swap extents example

block_device (/dev/hda1)
swap_file

extent_list

Swap area
descriptor

swap extent

start_block
start_page = 0
nr_pages = 65
list

start_block
start_page = 65
nr_pages = 30
list

start_block
start_page = 95
nr_pages = 32
list



Swapped-out page identifier
A swapped-out page is identified by:

The index of swap area
Page slot index inside the swap area

When a page is swapped out, its identifier is 
inserted into the corresponding page table 
entries.

OffsetType
02627

Area number Page slot index

swp_entry_t
31

Offset Type
078

pte_t
31

0
1

Page present bit



Encoding and decoding swap 
entry

OffsetType

swp_entry_t

0262731

swp_type() 

swp_offset()

Type

Offset
swp_entry()

Type

Offset

pte_to_swap_entry()swap_entry_to_pte()

Offset Type
078

pte_t
31

0
1



Activating a swap area –
sys_swapon()

1. Search swap_info array for empty slot 
(SWP_USED), update nr_swapfiles

2. Read in swap_header. 
3. Initialize lowest_bit, highest_bit, swap_map

according to the information in the swap_header
4. Setup swap extents (use bmap() to find block 

numbers in a file)
5. Update nr_swap_pages, total_swap_pages
6. Insert swap_info into swap_list



Deactivating a swap area –
sys_swapoff()

Partition being deactivated may still contain pages 
that belong to several processes

Scan the swap area and swap in all existing pages

1. Remove the swap area descriptor to be deactivated 
from swap_list

2. Update nr_swap_pages, total_swap_pages
3. Invoke try_to_unuse() to swap in pages
4. Destroy swap extents, free up swap_map and unset 

swap_info flags (SWP_USED, SWP_WRITEOK)



try_to_unuse()

1. Scan swap_map for in-use page slot
2. For each in-use page slot, 

1. Invoke read_swap_cache_async() to read the page 
in, and put it in the swap cache.

2. Scan the page table entries of all processes and replace 
each occurrence of the swapped-out page identifier 
with the physical address of the page just read in.

3. delete_from_swap_cache() to remove the page 
from swap cache



Allocating a page slot
Store pages in contiguous slots to minimize disk 
seek time

Always start from the beginning of the swap area
Bad for swap-out operations

Always start from the last allocated page slot
Bad for swap-in operations

Linux’s approach
Always start from the last allocated page slot, but if one 
of these conditions occurs, restart from the beginning

The end of the swap area is reached
SWAPFILE_CLUSTER free page slots were allocated after the last 
restart from the beginning of the swap area



Swap page Functions
scan_swap_map()

Given a swap area, scan its swap_map to find a free page slot
allocate from current cluster first

get_swap_page()

Invoke scan_swap_map() to find a free slot among all swap areas
The first pass searches areas having the same priority in a round-robin 
way. If no free slot is found, the second pass searches from the
beginning of the swap area list.

swap_free()

Invoked when swapping in a page to decrement the corresponding 
swap_map counter

If the counter reaches 0, it means the page slot is free and its identifier is 
not saved in any page table entry



Why Swap Cache?
Page frames may be shared among several processes if it 
belongs to:

Shared memory-mapped file 
no swap, just writeback

C-O-W memory region
process fork or private memory mapping

Anonymous shared or IPC shared memory
The same page may be swapped out for some processes and 
and present in memory for others

eg. A completely swapped-out page got swapped-in because of the 
memory access from one of the processes sharing the page

Kernel needs a data structure to find partially swapped-out 
pages.



The Role of the Swap Cache
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Swap Cache Implementation
Swap cache is implemented by the page cache data structures 
and functions.
Conceptually

address_space object for swap space: swapper_space
Page in the swap cache are just like any other page in the page cache, 
except

page.mapping = swapper_space
page.index = swp_entry_t

But in Linux 2.6, anonymous page’s mapping points to 
anon_vma for object-based reverse mapping. The solution:

page.private = swp_entry_t
Set page.flags = PG_swapcache
Use page_mapping() to find page’s actual mapping

ie. If PG_swapcache is set, it will return swapper_space



Swap cache insert, delete and 
lookup

lookup_swap_cache(swp_entry_t)

Lookup a swap entry in the swap cache. A found page will be 
returned unlocked with its reference count incremented

add_to_swap_cache(page, swp_entry_t)

Insert a page into the swap cache, increment page reference count 
and lock the page. It insert the page into swapper_space’s radix 
tree (also set PG_swapcache and page.rivate = swp_entry)

delete_from_swap_cache(page)

Remove a page from the swap cache
free_page_and_swap_cache(page)

Perform a put_page() and remove the page from the swap cache



Transferring swap pages
sector_t map_swap_page(swap_info, offset)

Use this swapdev’s extent information to locate the (PAGE_SIZE) block 
which corresponds to page offset ‘offset’.

get_swap_bio(gfp_flags,index,page,end_io)
Prepare the bio for writing the page to the swap area. It invokes 
map_swap_page() to find the corresponding block number for the page.

swap_readpage(page)
Asynchronous read the page from the swap area by calling get_swap_bio()
and submit_bio()

swap_writepage(page,writeback_control)
Asynchronous write the page to the swap area by calling get_swap_bio()
and submit_bio()

read_swap_cache_async(swp_entry)
Locate a page in the swap cache. If no page is found, allocate a new page, 
insert it into swap cache and read it from the disk by swap_readpage()

swapper_space’s readpage() and writepage()



Problem:
Before swapping out a page ..

You need to find an inactive page and unmap all its 
references from processes’ page table.
Linux 2.4 cannot 

derive from a page the list of PTEs mapping it. It uses swap cache to 
keep track of partially swap-out pages and reclaim the page only 
when the page reference count drops to 1 (page cache)
unmap only the pages it really wants to evict.

A

B
swap area

swap cache

pp

e



Linux 2.4’s approach to 
swap out a page

Because of this, in Linux 2.4, page reclaim routine 
shrink_cache() cannot check if a page returned from the 
inactive LRU list is really inactive by reading its PTEs nor 
can it swap the page out if the page is mapped. It invokes 
swap_out() when the number of mapped pages return from 
the inactive LRU list exceeds some threshold.
swap_out() scans each process’s page table for inactive 
pages and resets the PTE. It terminates when it successful 
releases SWAP_CLUSTER_MAX pages. A page frame is 
considered released when all references from the page tables 
of all processes are removed.
Eventually, a inactive mapped page will become unmapped 
and thus eligible for page reclaim.



Solution 1:
Direct reverse mapping

To help Linux find the page table entries associated 
with a given page
Direct reverse mapping

Given a physical page, return a list of pointers to PTEs
which point to that page.
Disadvantage

Memory exhaustion in low memory
fork() slow down significantly since it must add a new reverse 
mapping entry for every page in the process’s address space

pte.chain
page pte_chain

next_and_idx
pte_chain

page table



Solution 2:
Object-based reverse mapping

Find a given page’s page table entries indirectly 
For file-backed pages:

kernel can find all VMAs that maps the page at page-
>mapping.i_mmap

The VMA provides the information needed to find out 
what a given page's virtual address is in that process’s 
address space, and that, in turn, can be used to find the 
correct page table entry. 
Ref slide no. 44 page

mapping
i_mmap

address = vma->vm_start + 
((page->index - vma->vm_pgoff) << PAGE_SHIFT); Priority

Search TreeVMAPage table

address_space



Solution 2:
Object-based reverse mapping

For anonymous pages
Anonymous pages don’t have mapping 
behind
Introduce new data structures to chain 
VMAs

Advantage
One VMA can refer to thousands of pages, 
so a per-VMA cost will be far less than the 
per-page costs

Disadvantage
Greater computational cost
Freeing a page requires scanning multiple 
VMAs which may or may not contain 
references to the page under consideration.

anon_vma

page

mapping

Page table

Double 
Linked List

VMA



Priority search tree (prio_tree) –
speeding up the search of VMAs

Use to store and query intervals
A file-mapped vm_area_struct can be considered as an 
interval of file pages. We store all vmas that map a file in 
a prio_tree, then we can execute a query like: find a set 
of vmas that map a single or a set of contiguous file pages

Radix tree + heap tree
Time complexity: O(log n + m) 

"log n" indicates the height of the tree (maximum 64 in a 
32 bit machine) and "m" represents the number of vmas
that map the page(s). 



Priority search tree (prio_tree) –
indexes and rules

Indexes
heap_index: vm_pgoff + vm_size_in_pages (end)

radix_index: vm_pgoff (start)

Rules
heap_index of parent >= heap_index of any direct child
If heap_index of parent == heap_index of any child, then 
radix_index of parent < radix_index of that child
Nodes are hashed to left or right subtree using 
radix_index similar to a pure binary radix tree



Priority search tree example

0  1  2  3  4  5  6  7
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7 VMAs maps different intervals of a file
(radix_index, heap_index)

For easier understanding, we build the PST
on a 2D coordinate. A VMA with an interval 
from 4 to 7 has a point (4,7) on the plane
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Querying a priority search tree
A query of all the intervals overlapping [a,b]?

If the tree is empty, we return NULL
Let R be the root of the tree, (x, y) be its coordinate, and 
P(R) be the value separating the X-ranges of R’s child 
subtrees
Compare y to a. if y < a, we return without finding any 
intervals (all other nodes in the tree will have an even 
smaller Y-coordinate)
If a <= y and b >= x, report the root interval
Recursively search the left subtree of R
If P(R) < y, recursively search the right subtree of R



Extending priority search tree
A regular priority search tree is only suitable for 
storing vmas with different radix indices (vm_pgoff)
Solution

All vmas with the same radix and heap indices are linked 
vm_set.list

If there are many vmas with the same radix index, but 
different heap indices and if the regular priority search 
tree cannot index them all, we build an overflow subtree
that indexes such vmas using heap and size
(vm_size_in_pages) indices instead of heap and radix 
indices.



Overflowed Priority search tree
vmas are represented [radix_index, size_index, heap_index]

i.e., [start_vm_pgoff, vm_size_in_pages, end_vm_pgoff]

level  prio_tree_root->index_bits = 3
-----

_
0                                                     [0,7,7] |

/     \ |
------------------ ------------ |     Regular
/                          \ |  radix priority

1                             [1,6,7]                         [4,3,7]                |   search tree
/     \ /     \ |

------- ----- ------ ----- |  heap-and-radix
/                   \ /                  \ |      indexed

2                 [0,6,6]                [2,5,7]              [5,2,7]             [6,1,7]      |
/     \ /     \ /     \ /     \ |

3             [0,5,5] [1,5,6]         [2,4,6] [3,4,7]     [4,2,6] [5,1,6]     [6,0,6] [7,0,7]  |
/                       /                   / _
/                       /                   / _

4           [0,4,4]                 [2,3,5]              [4,1,5]                               |
/                       /                    / |

5          [0,3,3]                 [2,2,4]              [4,0,4]                                |  Overflow-sub-trees
/                       /                       |

6         [0,2,2]                 [2,1,3]                     |    heap-and-size
/                       /                        |       indexed

7        [0,1,1]                 [2,0,2]                      |
/                                                 |

8       [0,0,0]                                               |
_



Unmapping a page frame
try_to_unmap(page)

Try to remove all page table mappings to a page. According to 
the page type, it invokes try_to_unmap_file() or 
try_to_unmap_anon()

try_to_unmap_file(page)

try_to_unmap_anon(page)

vma_prio_tree_foreach(vma, &iter, 
&mapping->i_mmap, pgoff, pgoff) {

ret = try_to_unmap_one(page, vma);
if (ret == SWAP_FAIL || !page_mapped(page))

goto out;
}

list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
ret = try_to_unmap_one(page, vma);
if (ret == SWAP_FAIL || !page_mapped(page))

break;
}



Check if a page is referenced?
page_referenced()

Test if a page was referenced by checking 
PG_referenced flag in struct page and 
associated page table entries.

page_referenced_anon()
Go through anon_vma linked list and return the number 
of PTEs with accessed bit on

page_referenced_file()
Go through i_mmap priority search tree and return the 
number of PTEs with accessed bit on



Swapping in pages –
do_swap_page()

Invoked when page is not present and page table entry is not null (recall slide 
no.50)
It executes these steps:

1. Get the swapped-out identifier and invoke lookup_swap_cache() to find the 
page in swap cache. If found, jump to step 3

2. Invoke read_swap_cache_async() to swap in the page
3. Invoke mark_page_accessed(), lock the page (will block if page I/O is in flight) 

and acquire page_table_lock
4. Check if the page has been swapped in by other process. If true, release 

page_table_lock, unlock the page and return 1 (minor fault)
5. Invoke swap_free() to decrement the usage counter of the page slot
6. If swap cache is more than 50% full and the page is owned only by the process that 

caused tha fault, remove the page from swap cache
7. Increment mm->rss and unlock the page
8. Update the page table entry with the physical address of the requested page and 

invoke page_add_anon_rmap() to add reverse mapping
9. If this is a write access and the page is read-only shared among several processes, 

avoid another C-O-W fault by invoking do_wp_page()
10. Unlock page_table_lock



Page Frame Reclaim

When? (recall slide 33)
Reclaim memory when you cannot allocate memory from 
buddy system
Reclaim memory when kernel finds that memory is low

From where?
Slab cache
Page cache, buffer cache
Pages belong to user processes



Page frame reclaiming algorithm
consideration 

Ordering of pages based on ageing 
Least recently used pages should be freed before pages accessed recently

Distinction of pages based on the page state
Nondirty pages are better candidates than dirty pages for swapping out

Don’t write out tons of dirty pages just to reclaim a few pages (*)
Systems may be dealing mostly with dirty pages. Dirty pages with pageout
I/O started should be reclaimed as soon as possible after the I/O on them 
are finished. It’s nonsense to write out one gigabyte of data just for 
reclaiming 10 megabyte of memory.

Balancing file cache vs. anonymous memory (*)
The amount of pages caching files tends to be several magnitudes larger 
than that those taken by processes. Systems can end up evicting frequently 
accessed pages from memory in favor of a mass of recently but far less 
frequently accessed pages

* Since Linux 2.6



Second-chance (clock) page 
replacement algorithm

Used in Linux 2.0, 2.2
Scan mem_map array and reclaim a page if it is not 
mapped by any process and the PG_referenced
flag is off
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Mach-style page replacement 
algorithm

Used in Linux 2.4, 2.6
Maintain an active list and an inactive list per zone

Active
list

Inactive
list

Referenced

Not referenced (*)

* Filter out anonymous pages when some conditions met
Also, limit the number of pages per move to slowly sift through the active list

Not ref’ed, dirty,
disk I/O started

Free page
Pool

(free_list)

Not ref’ed, 
unmapped, clean Allocations



Moving pages across the LRU lists



Function overview

try_to_free_pages kswapd

shrink_slab shrink_caches out_of_memoryblk_congestion_wait

balanced_pgdat

shrink_zone

wakeup_bdflush

This function is invoked 
when grow_buffers()
or __alloc_pages()
fails.

One kswapd per node. It wakes 
up when the number of free 
pages falls below the pages_low
watermark.

work across all this 
node's zones until they 
are all at pages_high.



shrink_zone()

shrink_zone

refill_inactive_zone shrink_cache

shrink_listpage_referenced



shrink_list()

shrink_list

page_outtry_to_unmappage_referenced

__removed_from_page_cache free_hot_cold_pages

try_to_release_pages


