Linux Kernel Synchronization

Paul Chu
Hao-Ran Liu

o IS
inias ‘~—+—-L..

Term Definitions

» Critical sections
— Code paths that access shared data

> Race condition
— |If two context access the same critical section at the same
time
» Synchronization

— We use synchronization primitives in the kernel to ensure
that race conditions do not happen

E E 5
f l—n)

mples of race condition

It thiread T eReRE arge; Cha=argVv) 4
at+—+;
do, io. bleck()s // dead in nen-preemptive kermel
b--;

Nt thiread twe(Int arge; char== argv) 4
at+;
== 7/ dead iR preempuve kermel e i SiviEe

Nt thiread ARt arge, chal= araVv) 4
doer actions(@, 9)5 7/ asuming a+lr==

¥

INE ISR arge, charrs= argv) ¥
a++;
p==5 7/ deadiFether thireadsrdernet disableng

direce of concurrency in
the Linux kernel

» Interrupt handling (pseudo concurrency)
— Interrupt handlers
— Bottom halves

» Kernel preemption (pseudo concurrency)

— Cooperative: tasks invoke the scueduler for sleeping or
synchronization

— Noncooperative: one task in the kernel can preempt another
when the kernel is preemptive

» Symmetrical multiprocessing
— Kernel code can be executed by two or more processors

LLocking

» To prevent concurrency execution of a critical section

» Locking protocol
— Acquire a lock before accessing shared data
— If the lock is already held, you must wait
— Release the lock after completing the access

» Where to use
— ldentify what data needs protection
— Locks go with data, not code

Deadlocks

» A condition when threads hold the locks that others
are waiting for and they themselves are waiting for
locks held by others

» Deadlock can be prevented if any of the following
condition Is not true
— Mutual exclusion, Hold and wait, No preemption, Circular
waiting
» Strategies
— Enforce a specific locking order
— Reduce the number of locks to hold at the same time
— Prevent starvation

» A highly contended lock can slow down a system’s
performance
— Because a lock’s job is to serialize access to a resource

— This becomes worse when the number of processors Is
Increased

» Solution
— Divide a coarse lock into fine-grained lock

— Eliminate the needs to lock by separating data
 Per processor data

.'.....
< L___

e ALOMiC Operations

» Atomicity

— Not dividable by interrupts

» Eliminate pseudo concurrency

» May be mimic by disabling interrupt during operations
— Not dividable by other processors

» Bus locking capability in hardware must be supported

> \When to use

— Sharing simple data types; e.g. integer, bits
— No consistency requirement on two or more variables
— Better efficiency than complicated locking mechanisms

» As the building blocks of complicated locking
mechanisms

» Disable/enable local interrupt or lock/unlock bus is
not without cost

— Implicit memory barrier cause CPU to flush its pipeline

» Data caches invalidation of frequently modified
variables shared between different CPUs

» These are the overheads RCU avoids

» Atomic integer operations
— atomic_t ensures variables not be processed by non-atomic routines

ATOMICININN@RET)
Nt atemic read(@iemicy tr=\V)/ Void atemic. Se(@temict =\ It 1)
vold atemic add(nti;, atemic t \V)/ veld atemic sub(nit 1, atemic it =\V)

voeldiatemicinec(V) /- veidratemic, dec(y)
It atemic dec andl test(@temic t =V)/ IRt acomic Ine and test(atemic. t V)
atemic. addl negatve@nit 1, atemic, V)

» Atomic bitwise operations

IRt set Bit(nit A, veid==addif) /iRt cleai bit(int nr, void *addr)
IRt test. PRt N veld =addr)

Nt change bit(nt bt verd =addr)

test and set bit(int nr, vord =addr) / test and clear bit(int nr, void *addr)
test and’ changel PRt e veid =addir)

— Non-atomic operations: __test_bit(), and etc.

— Local-only atomic operations: local_add(local _t), and etc.

— The only portable way to set a specific bit (endianess)

\I--'“‘»kr_ﬂ_...

s=eEmesmRtomic operations on x86

» The processor use 3 interdependent mechanisms for
carrying out locked atomic operations

— Guaranteed atomic operations

» Reading or writing a byte, a word aligned on 16-bit boundary, a
doubleword aligned on 32-bit boundary

— Bus locking
» Automatic locking: accessing memory with XCHG instruction

« Software-controlled locking: use the prefix LOCK with certain
Instructions

— Cache coherency protocols
» The area of memory being locked might be cached in the processor

entlng atomic operations on x86

» Accessing a doubleword is guaranteed to be atomic

7Ziidelr CONEIG SV
#Hdefline LOCK “lock 5 *
#else

#Zdefine LOCK
e

Hdelineratemic read(V) ((W)-=ceunter)
#define atemic_set(\,I) (((W)E=counten) = (1))

statics " inlinel " voeid atemic add (Rt atemic t=5\)
1
L asm velatles (¢
LOCK 2ddFed Y60
“=m (V- >counter)
:"ir" ()5, "M (\V==CoUnter))s;

I\/Iemory barriers

» Both compilers and processors reorder instructions to get better
runtime performance
— Compilers reorder instructions at compile time (e.g. to increase the
throughput of pipelining)
— CPUs reorder instructions at runtime (e.g. to fill execution units in a
superscalar processor)
» Sometimes, we need memory read (load) and write (store)
Issued In the order specified in our program
— Issuing I/O commands to hardware
— Synchronized threads running on different processors
— Protecting instructions in a critical section from bleeding out

» A memory barrier primitive ensures that the operations placed
before the primitive are finished before starting the operations
placed after the primitive

provide the preé \ine

S temory barriers in Linux kernel

» Compiler barrier
— barrier(): prevents the compiler from optimizing stores/loads across it

» Hardware barrier + compiler barrier

— read_barrier_depends(): prevents data-dependent loads from being
reordered across it

— rmb(): prevents loads from being reorder across it
— wmb(): prevents stores from being reordered across it
— mb(): prevents loads or stores from being reordered across it

» These macros provide a memory barrier on SMP, and provide a
compiler barrier on UP”
— smp_read_barrier_depends()
— smp_rmb()
— smp_wmb()
— smp_mb()

* memory order observed by processes on the same CPU is guaranteed by processor (precise interrupt)

» Without memory barriers, it is possible that ¢ gets the
new value of b, whereas d receives the old value of a

Threadhd

a=3;
1819 0)
b=4;

» Without memory barriers, it Is possible for b to be set
to pp before pp was set to p

Thread i Thread 2

a = S5 [PI3" =195
0016)0) read’ barher depends();
pr=1&al; o) = «0)0)s

STO Iy

=
e

S|
x |

5rdering of various CPUs

» x86 does not support out-of-order stores (except few string

operations)
» Atomic instructions on x86 comes with implicit memory
barriers.
Loads Loads stores Stores ﬁ\i?rmul:iions ﬁtsct)rmugions E)zgindent
reordered reordered reordered reordered reordered reordered reordered?
after loads? | after stores? | after stores? | after loads?)) '
with loads? | with stores?
Alpha Yes Yes Yes Yes Yes Yes Yes
AMDG64 Yes Yes
|A64 Yes Yes Yes Yes Yes Yes
PowerPC Yes Yes Yes Yes Yes Yes
x86 Yes Yes Yes

Copy from ”"Memory ordering in modern processors, part 1”, Paul McKenny, Linux Journal #136, 2005

- 7'1‘-;.1-._.-— -"—‘—‘ﬁ._____

emﬂry barriers instructions for x86

» Serializing instructions (implicit memory barriers)
— All Instructions that operate on 1/O ports
— All instructions prefixed by the lock byte

— All instructions that write into control registers, system
registers or debug registers (e.g. cli and sti)

— A few special instructions (invd, invlpg, wbinvd, iret ...)

» Memory ordering Instructions (explicit memory
barriers)
— |Ifence, serializing all load operations
— sfence, serializing all store operations
— mfence, serializing all load and store operations

» The _ volatile __ tells gcc that the instruction has important side effects. Do
not delete the instruction or reschedule other instructions across it

» The “memory” tells gcc that the instruction changes memory, so that it does
not cache variables in registers across the instruction.

Zdefime bamer(asm T velatie (G S mEmeR/Y)

#Zdenme mbOraiermanve(locks addiFsSo;0(Y0Y0esp)s, miences, X861 ..")
7define mmb() alternative(*locks addlF$050(Y6Y6esp)r, “lience™, X861 ...)
#Zdeline read barner depends() doe 4 - while(o)

Zdefinewmb(L asm T velauler ™ 5 S mMEMmeR)

#Zikdeir CONEIG SR

#Zdefine smp.mb() 00101 0)

#Zdefine smp.rmis) rmi()

#Zdefine smp_ Wm0 Wil ()

#Zdeline smp.read barrer depends() read barrer depends()
7-else

#Zdefine smp.mb() parrer(

#Zdefine smp. i) parrer(

Zdefine smp. wWimb() parrer(

#Zdefine smp.read barrer depends() derg - While(o)
#Hendif

» Disable interrupts

— Eliminate pseudo concurrency on single processor
» Coupled with spinlock if sharing data between multiple processors

— Lead to longer interrupt latency

— When to use
« Normal path shares data with interrupt handlers
* Interrupt handlers share data with other interrupt handlers

* One interrupt handler for different IRQs share data within it; the
Interrupt handler might be reentrant

e Shorter duration of critical sections

— Need not to use

» Sharing data within an interrupt handler of a IRQ; interrupt handler
of a IRQ is not reentrant in SMP

» local_irq_disable() / local irq_enable()

— Disable or enable all interrupts of current CPU

» local_irg_save(flags) / local _irq_restore(flags)

— Save current IRQ state and disable IRQ

— Restore IRQ state instead of enabling it directly

— When a routine is reached both with and without interrupts enabled
» disable_irq(irq) / enable_irq(irq)

— Disable or enable a specific IRQ line for all CPUs

— Return only when the specific handler is not being executed
» disable_irqg_nosync(unsigned int irq)

— Disable a specific IRQ line without waiting it (SMP)
» State checking

— irgs_disabled(): if all local IRQs are disabled

— in_interrupt(): if being executed in interrupt context
— in_irg(): if being executed in an interrupt handler

» Context switches can happened at any time with a preemptive
kernel even when a process is in the kernel mode

— Critical sections must disable preemption to avoid race condition

> preempt_disable() / preempt_enable() is nestable; kernel
maintain a preempt count for every processes.

» Preemption-related functions

Hdeline preempi count(r (Cunrent thread inie()=>preempt. cotnt)
7deline preempt_disable()\
do & Ac. preempt. count@s \
barrier(s \
¥ while (0)
#Zdefline preempit._ enable ne; resched(O)r\
dor Y Barrer(Qs\

dec_preempit._count(; \

3 While (0)

7Zdefine preempi._enable()r\

do { preempi enalle’ noer resched(); \
preempi. check: resched(; \

¥ While (0)

== Spin Locks

» Disabling interrupts cannot stop other processors

» Spin lock busy waits a shared lock to be release

— Lightweight single-holder lock, all other threads will be
busy looping to poll the shared lock

» When it’s UP system
— Markers to disable kernel preemption (scheduling latency)
— Or, be removed at compile time if no kernel preemption

> When to use

— Sharing data among threads running on processors of SMP
system

— Sharing data among preempt-able kernel threads
— Shorter duration of critical sections

= =

OCRSY T

==-Spin lock functions

» spin_lock_init()
— Runtime initializing given spinlock _t
» spin_lock() / spin_unlock()
— Acquire or release given lock
» spin_lock_irg() / spin_unlock irq()
— Disable local interrupts and acquire given lock
— Release given lock and enable local interrupts
» spin_lock irgsave() / spin_unlock_irgrestore()

— Save current state of local interrupts, disable local interrupts and acquire
given lock

— Release given lock and restore local interrupts to given previous state
» spin_trylock()

— Try to acquire given lock; if unavailable, returns zero
» spin_islocked()

— Return nonzero if the given lock is currently acquired

ock Implementation on x86

» Implementation for SMP and preemptive kernel

7define spinlleck(leck) _ spin leck(lock)
voeidhleckiune spinl leck(Spinleck t Heck)
preempi disaisled)s
i (Unlikely(raw. spin. tryleck(leck)))
. preempit spinlleck(lock)s

» xchgb will lock the bus; it acts as a memory barrier

staticinlimennt rawl spin tileck(sSpinleck: tHock) 4
char oldvals;
asme wvelaties i
xehgor e %1
=g (eldval), “=m™ (leck==lock)
H0° (0) - “memenry)5
rettimreldvalr=ro5;

!15

Implementation on x86

7define spinlis lecked () ((velatile signed chair S(&OH-=leck) <= 0)

/= This covld be aleong=heldleck: liFanether CPUMBIdS It er a lena time,
= andi that CRU Isinot askedl te) reschedule then *this* CRUWill spin on the
= |eck for a long time;, even I =this> CRU Is;iasked to) reschedule.
= SeIWhat we' der here;, In the slow (contended) pathiis te spin en the lock: 19y
= hand whilerpermitine precmpien. =/
staticiinlimeveld preempi spin_leck(sSpinleck t =ock)r 4

I (pPreempi cotnt() = 14
rraw. sping leck(lock)s;
returag;

s

do {
preempi. enakie)s;
whille (Spin_is) lecked(leck))

cpu relax()s
preempis disaisle)s

- whinle (@ raw. spin tryleck(leck))s

Implementation on x86

-
-!l—
=1

7-define spin_leck string \
“\nd T\
Hocks; dech YZo0NANE™ \ /= Iecke BUS, MEmMGRY/ I9arHer =/
“ns SAn™ \ /A Jumpriinweracqguirerthelocks /.
S22\ \ /= spinleck leeprbelow: =/
“rep; nePNANE\ = = CpUL relax()r =/
“cmpla S0, Y6ONANES \ /=2 checkilifiockaisravailaler =/
e 2BNANE= \ /A Jumpritleck et availaible =/
Jmpr LN\ /leckeavailasles ti/ leckeagain =/
“3\n\t* /= leckiIs acqguired =/

staticinlimeverd: raws spin_leck(spinleck: t* Hock) 4
asm. velatler (

spin_leck: string

F=m (leck==leck) i - “memery:);

T P |

!1&"

BiFFTock implementation on x86

7define spin. unleck: string \
SmeVier S Y60\
=mt (leck==leck) : © “memony/

staticiinlimeverd rawl spinunleck(spiniock t Hock)
asim velauler \(
SpIR. URleck: StHnRg

)
i

#define spin_ unleck(leck): spin_ unleck(lock)

voidl leckitune spinl unleck(spinleck t Hock) 4
_aw. spin. unleck(leck)s;
preempi._enable);

» Conclusion about spin lock

— Spin lock implementation is composed of provided by atomic operations,
memory barriers and (preemption/bottom halve/interrupt) disabling

» Multiple concurrent accesses to shared data are read-
only

» Multiple read locks can be granted, but write lock Is
allowed only when there Is no any lock.

» Favor readers over writers: writers starvation

» Operations
— rw_lock_init(), rw_is_locked()
— read_lock(), read_lock irq(), and so on.
— write_lock(), write_lock irq(), and so on.

I _—

equence LLocks

» What are sequence locks (seqlock t)
— Similar to reader-writer spin locks
— But favor writers over readers

— A writer accesses data after acquiring a lock, while readers check the
lock by polling the sequence count

» Read needs retry if the count differs or it is an odd number
» How to use
— Writers

Wiite! segleck(seqglock)s /s acquireriocki & InCremenic cotni

/S WiHitethersharedidaita /.
wiiite! segunleck(seqlock)s; /releaseecike &Incremeni- agein

— Readers
do {

Seq| = read seghegin(seqlock)s; // Qe SEgUERCE couni

/= readithershared data =/
¥ while (read’ segretiy(seqglocks sed)s /L checkiiimwntereeckiis eltained

» Sequence lock data structure

LypPedelstruct 4
URSIGNEd SEqUENCE;
spinleck H1GCKS

¥ segleck t;

» Sequence lock functions for writers

static nline veld wihte, seglock(seglock: i+ =sl) 4
Spin_ leck(&slI->=Ieek));
+ES|-=Seguence;
Smp_ Wm0

s

statvic nline veid wrhite sequnleck(seqglock t *s) 4
Sp_Wmk()5;
Sl-=sequence+=+;
SpIRE UnRleck(&SsI==16CK)5;

» Seqguence lock functions for readers

static inline unsigned read. seghegin(const seglock it =sl)
{

UunRsigned ret =i slE>=seqguence;

smpL ks

FEeLurn ret;

b

static mline int read_segretry(const seqgleck t =Sl unsigned i)

o

SimpL ks
rettimr(v: & DN (SIE=seguencer = V)5

» Small quiz

— Jiffies variable in Linux kernel is declared with volatile
keyword. The keyword tells the compiler that the value of
this variable may change at any time and disables compiler
optimization on it.

— The question is: Why is not the field sequence in seglock _t
declared as volatile? (hint: the purpose of smp_rmb() and
smp_wmb())

‘Semaphores

» Sleeping locks

— The locking thread is put to sleep and be woken up when the lock is
released

> When to use

— The Lock is to be held for a long time
 the overhead of sleeping outweigh the lock hold time

— Can be used only in process context
— Shared data among threads

> Notes

— Do not hold spin lock before acquire a semaphore
— Thread holding semaphore might be preempted

» Types of semaphores
— Binary semaphore and mutex

— Counting semaphore
» More than one semaphore holders are allowed
» When the shared resources are more than one

re About Semaphores

» Semaphores operations

Sema_Init (Semeaphores, Int)
It MUEX(SEmaphere=) /it MUNEXT FOCKED(SEmaphore)

dewn(semaphere=) / dewn interfuptible(Semaphere=)
doewn tryleck(SEmapheres)
Up(SEmapRhere=™)

» Reader-writer semaphores (rw_semaphore)
— Same as reader-writer spin locks
— All uninterruptible sleep
— Converting acquired write lock to read lock

It Avsem(AWvi semaphore =)
dewn read (W semaphere)/ down Whte (v, Semeapheres)

upl read((avi semaphoere=) / up. Whte (W, semaphere =)
dewn rread tryleck(iiw semaphore:) /- dewn Wiite thyleck(iiw, semaphore:-)
downg@rade white(iiw, semeaphoere =)

» Bottom halves disabling

— Sharing data with softirgs and tasklets
 local bh_disable() / local _bh_enable()
 spin_lock bh() / spin_unlock_bh()

» Completion variables

— One thread waits another thread to complete some tasks
» wait_for_completion() / complete ()

» Big kernel lock (BKL)

— Locking the whole kernel; being discouraged.
» lock kernel() / unlock_kernel() / kernel locked()

gy |, S

Read-Copy Update

» Goal

— A high performance and scaling algorithm for read-mostly
situations

— Reader must not required to acquire locks, execute atomic
operations, or disable interrupts

> How

— Writers create new versions atomically
» Create new or delete old elements

— Readers can access old versions independently of
subsequent writers

— Old versions are garbage-collected by poor man’s GC,
deferring destruction

— Readers must signal “GC” when done

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCUY/)

gy |, S

Read-Copy Update

» Why

— Readers are not permitted to block in read-side critical
sections

— Once an element is deleted, any CPU that subsequently
performs a context switch cannot possibly gain a reference
to this element

» Overhead might incurred
— Readers incur little or no overhead (read_barrier_depends)

— Writers incur substantial overhead
* Writers must synchronize with each other
o \Writers must defer destructive actions until readers are done
e The poor man’s GC also incurs some overhead

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCUY/)

» Quiescent state
— Context switch is defined as the quiescent state
— Quiescent state cannot appear in a read-side critical section

— CPU In guiescent state are guaranteed to have completed all
preceding read-side critical section

» Grace period

— Any time period during which all CPUs pass through a
quiescent state

— A CPU may free up an element (destructive action) after a
grace period has elapsed from the time that it deletes the
element

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCUY/)

> Initial linked list

A

»
L

&
l

B

C

$ t
> Unlink element B from the list,

A

B

C
*

+
ogt do not free it

Ff f B
» At this point, each CPU has performed one context

switch after element B has been

unlinked. Thus, there

cannot be any more references to Eelement B

|

A & B

C

X -
» Free up element B

*

»
P
<
l

C

*

*

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCUY/)

ST Copy Update primitives

» rcu_read lock() / rcu_read _unlock()
— Mark the begin and end of a read-side critical section
— NULL on non-preemptive kernel; disable/enable preemption on
preemptive kernel

#Zdefine reul read lock() preempi disalsle)
#Zdefine reul read unleck() preempi. enakie)

» synchronize_rcu()
— Mark the end of updater code and the beginning of reclaimer code
— Wait until all pre-existing RCU read-side critical sections complete
— Subsequently started RCU read-side critical sections not waited for

» call_rcu(struct rcu_head *, void (*func)(struct rcu_head *))

— Asynchronous form of synchronize rcu()

— Instead of blocking, it registers a callback function which are invoked
after all ongoing RCU read-side critical sections have completed

» rcu_assign_pointer(p, v)

— uses this function to assign a new value to an RCU-
protected pointer

— It returns the new value and executes any memory-barrier
Instructions required for a given CPU architecture

Zdefine reuassign. pemter(p; V) (& smplwmb(); (@) =)5 1)

> rcu_dereference(p)

— Protect an RCU-protected pointer for later safe-
dereferencing; it executes any needed memory-barrier
Instructions for a given CPU architecture

#Zdefine recu dereference(p) (& typeoi(p) Pl = ps\

smpL read barrer dependsOs Cpl)s 1)

static nline verd st addreu(struct list head = new,
struct list_headl = prev, struct list_head = next)

{

NEWE=REXE = NEXLE;

NEW-=PIEV. = Prev;

Sp Wimb(0)5

REXT=>PKEV. = REW;

PrEV-=HEXT = NeEws;

3

static nline veld st add reu(structlist_ head =new, structlist head =head)

o

~IiIsis addireu(news heads; ead==nexi);

3

Zadefimer ISt fer each reu(poes; head) \
oK (pPes = (head)-=next; pPes = (head); \
PES = rcl dereference(pos=>=next))

» All of these locks divide provide different interfaces
for readers and writers

» RCU can be used only for algorithms that can tolerate
concurrent accesses and updates

» For read-mostly situation

— Use RCU if applicable; it avoids atomic operations (cache
bouncing) and memory barrier” (pipeline stall) overhead

— Use seqlock if applicable; it has memory barrier overhead
— Do not use rwlock if read-side critical section is short

* True for all architectures except Alpha

» Mapping the primitives between rwlock and RCU

Reader-writer lock

Read-Copy Update

rwlock _t

spinlock_t

read lock() rcu_read lock()
read_unlock() rcu_read _unlock()
write_lock() spin_lock()

write_unlock()

spin_unlock()

Flnal Remarks

» Design protection when you start everything

» ldentify the sources of concurrency
— Callback functions
— Event and interrupt handlers
— Instances of kernel threads
— When will be blocked and put to sleep
— SMP and preemptive kernel

» Lock goes with data structures not code segments
» Keep things simple when starting
» Use the right synchronization tool for the job

=~ References

» Linux Kernel Development, 2nd edition, Robert Love,
2005

» Understanding the Linux Kernel, Bovet & Cesatl,
O’REILLY, 2002

» Intel Architecture Software Developer’s Manual,
Volume 3: System Programming Guide, 2005

> Linux 2.6.10 kernel source

» RCU papers by Paul E. McKenney,
nttp://www.rdrop.com/users/paulmck/RCU/

	Linux Kernel Synchronization
	Term Definitions
	Examples of race condition
	Source of concurrency in �the Linux kernel
	Locking
	Deadlocks
	Lock contention and scalability
	Atomic Operations
	Overhead of atomic operations
	Atomic Operations in Linux kernel
	Atomic operations on x86
	Implementing atomic operations on x86
	Memory barriers
	Memory barriers in Linux kernel
	Example of using memory barriers
	Memory ordering of various CPUs
	Memory barriers instructions for x86
	Implementing memory barriers on x86
	Disabling Interrupts
	Interrupt Control Routines
	Disabling preemption
	Spin Locks
	Spin lock functions
	Spin lock implementation on x86
	Spin lock implementation on x86
	Spin lock implementation on x86
	Spin lock implementation on x86
	Reader-writer spin locks
	Sequence Locks
	Sequence lock implementation
	Sequence lock implementation
	volatile keyword v.s. memory barriers
	Semaphores
	More About Semaphores
	Other Synchronization Controls
	Read-Copy Update
	Read-Copy Update
	Read-Copy Update terms
	Read-Copy Update example
	Read-Copy Update primitives
	Read-Copy Update primitives
	RCU for the Linux list API
	rwlock, seqlock and RCU
	Reader-writer lock versus RCU
	Final Remarks
	References

