
Linux Kernel SynchronizationLinux Kernel Synchronization

Paul Chu Paul Chu
HaoHao--Ran LiuRan Liu

Term DefinitionsTerm Definitions

Critical sections
– Code paths that access shared data

Race condition
– If two context access the same critical section at the same

time

Synchronization
– We use synchronization primitives in the kernel to ensure

that race conditions do not happen

Examples of race conditionExamples of race condition

intint thread_one(intthread_one(int argcargc, char** , char** argvargv) {) {
a++;a++;
do_io_blockdo_io_block(); // dead in non(); // dead in non--preemptive kernelpreemptive kernel
bb----;;

}}

intint a = 0, b = 0; /* a = 0, b = 0; /* a+ba+b must be 0 always */must be 0 always */

intint thread_two(intthread_two(int argcargc, char** , char** argvargv) {) {
a++;a++;
bb----; // dead in preemptive kernel or in SMP; // dead in preemptive kernel or in SMP

}}

intint isr(intisr(int argcargc, char** , char** argvargv) {) {
a++;a++;
bb----; // dead if other threads do not disable ; // dead if other threads do not disable irqirq

}}

intint thread_x(intthread_x(int argcargc, char** , char** argvargv) {) {
do_actions(ado_actions(a, b); // , b); // asumingasuming a+ba+b == 0== 0

}}

Source of concurrency in Source of concurrency in
the Linux kernelthe Linux kernel

Interrupt handling (pseudo concurrency)
– Interrupt handlers
– Bottom halves

Kernel preemption (pseudo concurrency)
– Cooperative: tasks invoke the scueduler for sleeping or

synchronization
– Noncooperative: one task in the kernel can preempt another

when the kernel is preemptive

Symmetrical multiprocessing
– Kernel code can be executed by two or more processors

LockingLocking

To prevent concurrency execution of a critical section
Locking protocol
– Acquire a lock before accessing shared data
– If the lock is already held, you must wait
– Release the lock after completing the access

Where to use
– Identify what data needs protection
– Locks go with data, not code

DeadlocksDeadlocks

A condition when threads hold the locks that others
are waiting for and they themselves are waiting for
locks held by others
Deadlock can be prevented if any of the following
condition is not true
– Mutual exclusion, Hold and wait, No preemption, Circular

waiting

Strategies
– Enforce a specific locking order
– Reduce the number of locks to hold at the same time
– Prevent starvation

Lock contention and scalabilityLock contention and scalability

A highly contended lock can slow down a system’s
performance
– Because a lock’s job is to serialize access to a resource
– This becomes worse when the number of processors is

increased

Solution
– Divide a coarse lock into fine-grained lock
– Eliminate the needs to lock by separating data

• Per processor data

Atomic OperationsAtomic Operations
Atomicity
– Not dividable by interrupts

• Eliminate pseudo concurrency
• May be mimic by disabling interrupt during operations

– Not dividable by other processors
• Bus locking capability in hardware must be supported

When to use
– Sharing simple data types; e.g. integer, bits
– No consistency requirement on two or more variables
– Better efficiency than complicated locking mechanisms

As the building blocks of complicated locking
mechanisms

Overhead of atomic operationsOverhead of atomic operations

Disable/enable local interrupt or lock/unlock bus is
not without cost
– Implicit memory barrier cause CPU to flush its pipeline

Data caches invalidation of frequently modified
variables shared between different CPUs
These are the overheads RCU avoids

Atomic Operations in Linux kernelAtomic Operations in Linux kernel
Atomic integer operations
– atomic_t ensures variables not be processed by non-atomic routines

Atomic bitwise operations

– Non-atomic operations: __test_bit(), and etc.
– Local-only atomic operations: local_add(local_t), and etc.
– The only portable way to set a specific bit (endianess)

intint set_bit(intset_bit(int nr, void *nr, void *addraddr) /) / intint clear_bit(intclear_bit(int nr, void *nr, void *addraddr))
intint test_bit(inttest_bit(int nr, void *nr, void *addraddr))
intint change_bit(intchange_bit(int bit, void *bit, void *addraddr))
test_and_set_bit(inttest_and_set_bit(int nr, void *nr, void *addraddr) /) / test_and_clear_bit(inttest_and_clear_bit(int nr, void *nr, void *addraddr))
test_and_change_bit(inttest_and_change_bit(int nr, void *nr, void *addraddr))

ATOMIC_INIT(intATOMIC_INIT(int i)i)
intint atomic_read(atomic_tatomic_read(atomic_t *v) / void *v) / void atomic_set(atomic_tatomic_set(atomic_t *v, *v, intint i)i)
void void atomic_add(intatomic_add(int i, i, atomic_tatomic_t *v) / void *v) / void atomic_sub(intatomic_sub(int i, i, atomic_tatomic_t *v)*v)
void void atomic_inc(vatomic_inc(v) / void) / void atomic_dec(vatomic_dec(v))
intint atomic_dec_and_test(atomic_tatomic_dec_and_test(atomic_t *v) / *v) / intint acomic_inc_and_testacomic_inc_and_test ((atomic_tatomic_t *v)*v)
atomic_add_negative(intatomic_add_negative(int i, i, atomic_tatomic_t *v)*v)

Atomic operations on x86Atomic operations on x86

The processor use 3 interdependent mechanisms for
carrying out locked atomic operations
– Guaranteed atomic operations

• Reading or writing a byte, a word aligned on 16-bit boundary, a
doubleword aligned on 32-bit boundary

– Bus locking
• Automatic locking: accessing memory with XCHG instruction
• Software-controlled locking: use the prefix LOCK with certain

instructions

– Cache coherency protocols
• The area of memory being locked might be cached in the processor

Implementing atomic operations on x86Implementing atomic operations on x86

Accessing a doubleword is guaranteed to be atomic

##ifdefifdef CONFIG_SMPCONFIG_SMP
#define LOCK "lock ; "#define LOCK "lock ; "
#else#else
#define LOCK ""#define LOCK ""
##endifendif

#define #define atomic_read(vatomic_read(v)) ((v)((v)-->counter)>counter)

#define #define atomic_set(v,iatomic_set(v,i)) (((v)(((v)-->counter) = (i))>counter) = (i))

static __inline__ void static __inline__ void atomic_add(intatomic_add(int i, i, atomic_tatomic_t *v)*v)
{{

____asmasm__ __volatile__(__ __volatile__(
LOCK "LOCK "addladdl %1,%0"%1,%0"
:"=m" (v:"=m" (v-->counter)>counter)
:":"irir" (i), "m" (v" (i), "m" (v-->counter));>counter));

}}

Memory barriersMemory barriers
Both compilers and processors reorder instructions to get better
runtime performance
– Compilers reorder instructions at compile time (e.g. to increase the

throughput of pipelining)
– CPUs reorder instructions at runtime (e.g. to fill execution units in a

superscalar processor)
Sometimes, we need memory read (load) and write (store)
issued in the order specified in our program
– Issuing I/O commands to hardware
– Synchronized threads running on different processors
– Protecting instructions in a critical section from bleeding out

A memory barrier primitive ensures that the operations placed
before the primitive are finished before starting the operations
placed after the primitive

Memory barriers in Linux kernelMemory barriers in Linux kernel
Compiler barrier
– barrier(): prevents the compiler from optimizing stores/loads across it

Hardware barrier + compiler barrier
– read_barrier_depends(): prevents data-dependent loads from being

reordered across it
– rmb(): prevents loads from being reorder across it
– wmb(): prevents stores from being reordered across it
– mb(): prevents loads or stores from being reordered across it

These macros provide a memory barrier on SMP, and provide a
compiler barrier on UP*

– smp_read_barrier_depends()
– smp_rmb()
– smp_wmb()
– smp_mb()

* memory order observed by processes on the same CPU is guaranteed by processor (precise interrupt)

Example of using memory barriersExample of using memory barriers

Without memory barriers, it is possible that c gets the
new value of b, whereas d receives the old value of a

Without memory barriers, it is possible for b to be set
to pp before pp was set to p

Thread 1Thread 1 Thread 2Thread 2

a = 3;a = 3; c = b;c = b;
mbmb();(); rmbrmb();();
b = 4;b = 4; d = a;d = a;

Thread 1Thread 1 Thread 2Thread 2

a = 3;a = 3; pp = p;pp = p;
mbmb();(); read_barrier_dependsread_barrier_depends();();
p = &a;p = &a; b = *pp;b = *pp;

Memory ordering of various CPUsMemory ordering of various CPUs
x86 does not support out-of-order stores (except few string
operations)
Atomic instructions on x86 comes with implicit memory
barriers.

Loads
reordered
after loads?

Loads
reordered
after stores?

Stores
reordered
after stores?

Stores
reordered
after loads?

Atomic
instructions
reordered
with loads?

Atomic
instructions
reordered
with stores?

Dependent
loads
reordered?

Alpha Yes Yes Yes Yes Yes Yes Yes

AMD64 Yes Yes

IA64 Yes Yes Yes Yes Yes Yes

PowerPC Yes Yes Yes Yes Yes Yes

x86 Yes Yes Yes

Copy from ”Memory ordering in modern processors, part I”, Paul McKenny, Linux Journal #136, 2005

Memory barriers instructions for x86Memory barriers instructions for x86

Serializing instructions (implicit memory barriers)
– All instructions that operate on I/O ports
– All instructions prefixed by the lock byte
– All instructions that write into control registers, system

registers or debug registers (e.g. cli and sti)
– A few special instructions (invd, invlpg, wbinvd, iret …)

Memory ordering Instructions (explicit memory
barriers)
– lfence, serializing all load operations
– sfence, serializing all store operations
– mfence, serializing all load and store operations

Implementing memory barriers on x86Implementing memory barriers on x86

The __volatile __ tells gcc that the instruction has important side effects. Do
not delete the instruction or reschedule other instructions across it
The “memory” tells gcc that the instruction changes memory, so that it does
not cache variables in registers across the instruction.

#define barrier() __asm__ __volatile__("": : :"memory")#define barrier() __asm__ __volatile__("": : :"memory")
#define #define mbmb() () alternative("lockalternative("lock; ; addladdl $0,0(%%esp)", "$0,0(%%esp)", "mfencemfence", X86_...)", X86_...)
#define #define rmbrmb() () alternative("lockalternative("lock; ; addladdl $0,0(%%esp)", "$0,0(%%esp)", "lfencelfence", X86_...)", X86_...)
#define #define read_barrier_dependsread_barrier_depends()() do { } while(0)do { } while(0)
#define #define wmbwmb()() ____asmasm__ __volatile__ ("": : :"memory")__ __volatile__ ("": : :"memory")

##ifdefifdef CONFIG_SMPCONFIG_SMP
#define #define smp_mbsmp_mb()() mbmb()()
#define #define smp_rmbsmp_rmb()() rmbrmb()()
#define #define smp_wmbsmp_wmb()() wmbwmb()()
#define #define smp_read_barrier_dependssmp_read_barrier_depends()() read_barrier_dependsread_barrier_depends()()
#else#else
#define #define smp_mbsmp_mb()() barrier()barrier()
#define #define smp_rmbsmp_rmb()() barrier()barrier()
#define #define smp_wmbsmp_wmb()() barrier()barrier()
#define #define smp_read_barrier_dependssmp_read_barrier_depends()() do { } while(0)do { } while(0)
##endifendif

Disabling InterruptsDisabling Interrupts

Disable interrupts
– Eliminate pseudo concurrency on single processor

• Coupled with spinlock if sharing data between multiple processors
– Lead to longer interrupt latency
– When to use

• Normal path shares data with interrupt handlers
• Interrupt handlers share data with other interrupt handlers
• One interrupt handler for different IRQs share data within it; the

interrupt handler might be reentrant
• Shorter duration of critical sections

– Need not to use
• Sharing data within an interrupt handler of a IRQ; interrupt handler

of a IRQ is not reentrant in SMP

Interrupt Control RoutinesInterrupt Control Routines
local_irq_disable() / local_irq_enable()
– Disable or enable all interrupts of current CPU

local_irq_save(flags) / local_irq_restore(flags)
– Save current IRQ state and disable IRQ
– Restore IRQ state instead of enabling it directly
– When a routine is reached both with and without interrupts enabled

disable_irq(irq) / enable_irq(irq)
– Disable or enable a specific IRQ line for all CPUs
– Return only when the specific handler is not being executed

disable_irq_nosync(unsigned int irq)
– Disable a specific IRQ line without waiting it (SMP)

State checking
– irqs_disabled(): if all local IRQs are disabled
– in_interrupt(): if being executed in interrupt context
– in_irq(): if being executed in an interrupt handler

Disabling preemptionDisabling preemption
Context switches can happened at any time with a preemptive
kernel even when a process is in the kernel mode
– Critical sections must disable preemption to avoid race condition

preempt_disable() / preempt_enable() is nestable; kernel
maintain a preempt count for every processes.
Preemption-related functions

#define #define preempt_countpreempt_count()() ((current_thread_infocurrent_thread_info()()-->>preempt_countpreempt_count))
#define #define preempt_disablepreempt_disable() () \\
do {do { inc_preempt_countinc_preempt_count(); (); \\

barrier(); barrier(); \\
} while (0)} while (0)
#define #define preempt_enable_no_reschedpreempt_enable_no_resched() () \\
do {do { barrier(); barrier(); \\

dec_preempt_countdec_preempt_count(); (); \\
} while (0)} while (0)
#define #define preempt_enablepreempt_enable() () \\
do {do { preempt_enable_no_reschedpreempt_enable_no_resched(); (); \\

preempt_check_reschedpreempt_check_resched(); (); \\
} while (0)} while (0)

Spin LocksSpin Locks

Disabling interrupts cannot stop other processors
Spin lock busy waits a shared lock to be release
– Lightweight single-holder lock, all other threads will be

busy looping to poll the shared lock
When it’s UP system
– Markers to disable kernel preemption (scheduling latency)
– Or, be removed at compile time if no kernel preemption

When to use
– Sharing data among threads running on processors of SMP

system
– Sharing data among preempt-able kernel threads
– Shorter duration of critical sections

Spin lock functionsSpin lock functions
spin_lock_init()
– Runtime initializing given spinlock_t

spin_lock() / spin_unlock()
– Acquire or release given lock

spin_lock_irq() / spin_unlock_irq()
– Disable local interrupts and acquire given lock
– Release given lock and enable local interrupts

spin_lock_irqsave() / spin_unlock_irqrestore()
– Save current state of local interrupts, disable local interrupts and acquire

given lock
– Release given lock and restore local interrupts to given previous state

spin_trylock()
– Try to acquire given lock; if unavailable, returns zero

spin_islocked()
– Return nonzero if the given lock is currently acquired

Spin lock implementation on x86Spin lock implementation on x86

Implementation for SMP and preemptive kernel

xchgb will lock the bus; it acts as a memory barrier

#define #define spin_lock(lockspin_lock(lock)) __spin_lock(lockspin_lock(lock))
void __void __lockfunclockfunc __spin_lock(spinlock_tspin_lock(spinlock_t *lock) {*lock) {

preempt_disablepreempt_disable();();
if (if (unlikely(!_raw_spin_trylock(lockunlikely(!_raw_spin_trylock(lock))))))

____preempt_spin_lock(lockpreempt_spin_lock(lock););
}}

static inline static inline intint __raw_spin_trylock(spinlock_traw_spin_trylock(spinlock_t *lock) {*lock) {
char char oldvaloldval;;
____asmasm__ __volatile__(__ __volatile__(

""xchgbxchgb %b0,%1"%b0,%1"
:"=q" (:"=q" (oldvaloldval), "=m" (lock), "=m" (lock-->lock)>lock)
:"0" (0) : "memory");:"0" (0) : "memory");

return return oldvaloldval > 0;> 0;
}}

Spin lock implementation on x86Spin lock implementation on x86
#define #define spin_is_locked(xspin_is_locked(x)) (*(volatile signed char *)(&(x)(*(volatile signed char *)(&(x)-->lock) <= 0)>lock) <= 0)

/* This could be a long/* This could be a long--held lock. If another CPU holds it for a long time,held lock. If another CPU holds it for a long time,
* and that CPU is not asked to reschedule then *this* CPU will * and that CPU is not asked to reschedule then *this* CPU will spin on thespin on the
* lock for a long time, even if *this* CPU is asked to reschedu* lock for a long time, even if *this* CPU is asked to reschedule.le.
* So what we do here, in the slow (contended) path is to spin o* So what we do here, in the slow (contended) path is to spin on the lock byn the lock by
* hand while permitting preemption. */* hand while permitting preemption. */

static inline void __static inline void __preempt_spin_lock(spinlock_tpreempt_spin_lock(spinlock_t *lock) {*lock) {
if (if (preempt_countpreempt_count() > 1) {() > 1) {

__raw_spin_lock(lockraw_spin_lock(lock););
return;return;

}}
do {do {

preempt_enablepreempt_enable();();
while (while (spin_is_locked(lockspin_is_locked(lock))))

cpu_relaxcpu_relax();();
preempt_disablepreempt_disable();();

} while (!_} while (!_raw_spin_trylock(lockraw_spin_trylock(lock));));
}}

Spin lock implementation on x86Spin lock implementation on x86

#define #define spin_lock_stringspin_lock_string \\
""\\n1:n1:\\t" t" \\
"lock ; "lock ; decbdecb %0%0\\nn\\t" t" \\ /* lock bus, memory barrier *//* lock bus, memory barrier */
""jnsjns 3f3f\\n" n" \\ /* jump if we acquire the lock *//* jump if we acquire the lock */
"2:"2:\\t" t" \\ /* spin lock loop below *//* spin lock loop below */
""rep;noprep;nop\\nn\\tt" " \\ /* = /* = cpu_relaxcpu_relax() */() */
""cmpbcmpb $0,%0$0,%0\\nn\\t" t" \\ /* check if lock is available *//* check if lock is available */
""jlejle 2b2b\\nn\\t" t" \\ /* jump if lock not available *//* jump if lock not available */
""jmpjmp 1b1b\\n" n" \\ /* lock available, try lock again *//* lock available, try lock again */
"3:"3:\\nn\\tt““ /* lock is acquired *//* lock is acquired */

static inline void _static inline void _raw_spin_lock(spinlock_traw_spin_lock(spinlock_t *lock) {*lock) {
____asmasm__ __volatile__(__ __volatile__(

spin_lock_stringspin_lock_string
:"=m" (lock:"=m" (lock-->lock) : : "memory");>lock) : : "memory");

}}

Spin lock implementation on x86Spin lock implementation on x86

Conclusion about spin lock
– Spin lock implementation is composed of provided by atomic operations,

memory barriers and (preemption/bottom halve/interrupt) disabling

#define #define spin_unlock_stringspin_unlock_string \\
""movbmovb $1,%0" $1,%0" \\

:"=m" (lock:"=m" (lock-->lock) : : "memory>lock) : : "memory““

static inline void _static inline void _raw_spin_unlock(spinlock_traw_spin_unlock(spinlock_t *lock) {*lock) {
____asmasm__ __volatile__(__ __volatile__(

spin_unlock_stringspin_unlock_string
););

}}
#define #define spin_unlock(lockspin_unlock(lock)) __spin_unlock(lockspin_unlock(lock))
void __void __lockfunclockfunc __spin_unlock(spinlock_tspin_unlock(spinlock_t *lock) {*lock) {

__raw_spin_unlock(lockraw_spin_unlock(lock););
preempt_enablepreempt_enable();();

}}

ReaderReader--writer spin lockswriter spin locks

Multiple concurrent accesses to shared data are read-
only
Multiple read locks can be granted, but write lock is
allowed only when there is no any lock.
Favor readers over writers: writers starvation
Operations
– rw_lock_init(), rw_is_locked()
– read_lock(), read_lock_irq(), and so on.
– write_lock(), write_lock_irq(), and so on.

Sequence LocksSequence Locks
What are sequence locks (seqlock_t)
– Similar to reader-writer spin locks
– But favor writers over readers
– A writer accesses data after acquiring a lock, while readers check the

lock by polling the sequence count
• Read needs retry if the count differs or it is an odd number

How to use
– Writers

– Readers

write_seqlock(seqlockwrite_seqlock(seqlock);); // acquire lock & increment count// acquire lock & increment count
/* write the shared data *//* write the shared data */
write_sequnlock(seqlockwrite_sequnlock(seqlock);); // release lock & increment again// release lock & increment again

do {do {
seqseq = = read_seqbegin(seqlockread_seqbegin(seqlock);); // get sequence count// get sequence count
/* read the shared data *//* read the shared data */

} while (} while (read_seqretry(seqlockread_seqretry(seqlock, , seqseq);); // check if write lock is obtained// check if write lock is obtained

Sequence lock implementationSequence lock implementation

static inline void static inline void write_seqlock(seqlock_twrite_seqlock(seqlock_t **slsl) {) {
spin_lock(&slspin_lock(&sl-->lock);>lock);
++++slsl-->sequence;>sequence;
smp_wmbsmp_wmb();();

}}
static inline void static inline void write_sequnlock(seqlock_twrite_sequnlock(seqlock_t **slsl) {) {

smp_wmbsmp_wmb();();
slsl-->sequence++;>sequence++;
spin_unlock(&slspin_unlock(&sl-->lock);>lock);

}}

typedeftypedef structstruct {{
unsigned sequence;unsigned sequence;
spinlock_tspinlock_t lock;lock;

} } seqlock_tseqlock_t;;

Sequence lock data structure

Sequence lock functions for writers

Sequence lock implementationSequence lock implementation

Sequence lock functions for readers
static inline unsigned static inline unsigned read_seqbegin(constread_seqbegin(const seqlock_tseqlock_t **slsl))
{{

unsigned ret = unsigned ret = slsl-->sequence;>sequence;
smp_rmbsmp_rmb();();
return ret;return ret;

}}
static inline static inline intint read_seqretry(constread_seqretry(const seqlock_tseqlock_t **slsl, unsigned iv), unsigned iv)
{{

smp_rmbsmp_rmb();();
return (iv & 1) | (return (iv & 1) | (slsl-->sequence ^ iv);>sequence ^ iv);

}}

volatilevolatile keyword keyword v.sv.s. memory barriers. memory barriers

Small quiz
– jiffies variable in Linux kernel is declared with volatile

keyword. The keyword tells the compiler that the value of
this variable may change at any time and disables compiler
optimization on it.

– The question is: Why is not the field sequence in seqlock_t
declared as volatile? (hint: the purpose of smp_rmb() and
smp_wmb())

SemaphoresSemaphores
Sleeping locks
– The locking thread is put to sleep and be woken up when the lock is

released
When to use
– The Lock is to be held for a long time

• the overhead of sleeping outweigh the lock hold time
– Can be used only in process context
– Shared data among threads

Notes
– Do not hold spin lock before acquire a semaphore
– Thread holding semaphore might be preempted

Types of semaphores
– Binary semaphore and mutex
– Counting semaphore

• More than one semaphore holders are allowed
• When the shared resources are more than one

More About SemaphoresMore About Semaphores
Semaphores operations

Reader-writer semaphores (rw_semaphore)
– Same as reader-writer spin locks
– All uninterruptible sleep
– Converting acquired write lock to read lock

sema_initsema_init (semaphore*, (semaphore*, intint))
init_MUTEX(semaphoreinit_MUTEX(semaphore*) / *) / init_MUTEX_LOCKED(semaphoreinit_MUTEX_LOCKED(semaphore*)*)
down(semaphoredown(semaphore*) / *) / down_interruptible(semaphoredown_interruptible(semaphore*)*)
down_trylock(semaphoredown_trylock(semaphore*)*)
up(semaphoreup(semaphore*)*)

init_rwsem(rw_semaphoreinit_rwsem(rw_semaphore*)*)
down_read(rw_semaphoredown_read(rw_semaphore*) / *) / down_write(rw_semaphoredown_write(rw_semaphore*)*)
up_read(rw_semaphoreup_read(rw_semaphore*) / *) / up_write(rw_semaphoreup_write(rw_semaphore *)*)
down_read_trylock(rw_semaphoredown_read_trylock(rw_semaphore*) / *) / down_write_trylock(rw_semaphoredown_write_trylock(rw_semaphore*)*)
downgrade_write(rw_semaphoredowngrade_write(rw_semaphore *)*)

Other Synchronization ControlsOther Synchronization Controls

Bottom halves disabling
– Sharing data with softirqs and tasklets

• local_bh_disable() / local_bh_enable()
• spin_lock_bh() / spin_unlock_bh()

Completion variables
– One thread waits another thread to complete some tasks

• wait_for_completion() / complete ()

Big kernel lock (BKL)
– Locking the whole kernel; being discouraged.

• lock_kernel() / unlock_kernel() / kernel_locked()

ReadRead--Copy UpdateCopy Update

Goal
– A high performance and scaling algorithm for read-mostly

situations
– Reader must not required to acquire locks, execute atomic

operations, or disable interrupts
How
– Writers create new versions atomically

• Create new or delete old elements
– Readers can access old versions independently of

subsequent writers
– Old versions are garbage-collected by poor man’s GC,

deferring destruction
– Readers must signal “GC” when done

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCU/)

ReadRead--Copy UpdateCopy Update

Why
– Readers are not permitted to block in read-side critical

sections
– Once an element is deleted, any CPU that subsequently

performs a context switch cannot possibly gain a reference
to this element

Overhead might incurred
– Readers incur little or no overhead (read_barrier_depends)
– Writers incur substantial overhead

• Writers must synchronize with each other
• Writers must defer destructive actions until readers are done
• The poor man’s GC also incurs some overhead

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCU/)

ReadRead--Copy Update termsCopy Update terms

Quiescent state
– Context switch is defined as the quiescent state
– Quiescent state cannot appear in a read-side critical section
– CPU in quiescent state are guaranteed to have completed all

preceding read-side critical section

Grace period
– Any time period during which all CPUs pass through a

quiescent state
– A CPU may free up an element (destructive action) after a

grace period has elapsed from the time that it deletes the
element

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCU/)

ReadRead--Copy Update exampleCopy Update example

Initial linked list

Unlink element B from the list, but do not free it

At this point, each CPU has performed one context
switch after element B has been unlinked. Thus, there
cannot be any more references to element B

Free up element B

A B C

A B C

A B C

A C

The materials are about RCU are from author’s website (http://www.rdrop.com/users/paulmck/RCU/)

ReadRead--Copy Update primitivesCopy Update primitives
rcu_read_lock() / rcu_read_unlock()
– Mark the begin and end of a read-side critical section
– NULL on non-preemptive kernel; disable/enable preemption on

preemptive kernel

synchronize_rcu()
– Mark the end of updater code and the beginning of reclaimer code
– Wait until all pre-existing RCU read-side critical sections complete
– Subsequently started RCU read-side critical sections not waited for

call_rcu(struct rcu_head *, void (*func)(struct rcu_head *))
– Asynchronous form of synchronize_rcu()
– Instead of blocking, it registers a callback function which are invoked

after all ongoing RCU read-side critical sections have completed

#define #define rcu_read_lockrcu_read_lock()() preempt_disablepreempt_disable()()
#define #define rcu_read_unlockrcu_read_unlock()() preempt_enablepreempt_enable()()

ReadRead--Copy Update primitivesCopy Update primitives

rcu_assign_pointer(p, v)
– uses this function to assign a new value to an RCU-

protected pointer
– It returns the new value and executes any memory-barrier

instructions required for a given CPU architecture

rcu_dereference(p)
– Protect an RCU-protected pointer for later safe-

dereferencing; it executes any needed memory-barrier
instructions for a given CPU architecture

#define #define rcu_assign_pointer(prcu_assign_pointer(p, v), v) ({ ({ smp_wmbsmp_wmb(); (p) = (v); })(); (p) = (v); })

#define #define rcu_dereference(prcu_dereference(p) ({) ({ typeof(ptypeof(p) _p1 = p;) _p1 = p; \\
smp_read_barrier_dependssmp_read_barrier_depends(); (_p1); })(); (_p1); })

RCU for the Linux RCU for the Linux listlist APIAPI

static inline void __static inline void __list_add_rcu(structlist_add_rcu(struct list_headlist_head * new,* new,
structstruct list_headlist_head * * prevprev, , structstruct list_headlist_head * next)* next)

{{
newnew-->next = >next = nextnext;;
newnew-->>prevprev = = prevprev;;
smp_wmbsmp_wmb();();
nextnext-->>prevprev = new;= new;
prevprev-->next = new;>next = new;

}}

static inline void static inline void list_add_rcu(structlist_add_rcu(struct list_headlist_head *new, *new, structstruct list_headlist_head *head)*head)
{{

____list_add_rcu(newlist_add_rcu(new, head, head, head, head-->next);>next);
}}

#define __#define __list_for_each_rcu(poslist_for_each_rcu(pos, head) , head) \\
for (pos = (head)for (pos = (head)-->next; pos != (head); >next; pos != (head); \\
pos = pos = rcu_dereference(posrcu_dereference(pos-->next))>next))

rwlockrwlock, , seqlockseqlock and RCUand RCU

All of these locks divide provide different interfaces
for readers and writers
RCU can be used only for algorithms that can tolerate
concurrent accesses and updates
For read-mostly situation
– Use RCU if applicable; it avoids atomic operations (cache

bouncing) and memory barrier* (pipeline stall) overhead
– Use seqlock if applicable; it has memory barrier overhead
– Do not use rwlock if read-side critical section is short

* True for all architectures except Alpha

ReaderReader--writer lock versus RCUwriter lock versus RCU

Mapping the primitives between rwlock and RCU

Reader-writer lock Read-Copy Update
rwlock_t spinlock_t
read_lock() rcu_read_lock()
read_unlock() rcu_read_unlock()
write_lock() spin_lock()
write_unlock() spin_unlock()

Final RemarksFinal Remarks

Design protection when you start everything
Identify the sources of concurrency
– Callback functions
– Event and interrupt handlers
– Instances of kernel threads
– When will be blocked and put to sleep
– SMP and preemptive kernel

Lock goes with data structures not code segments
Keep things simple when starting
Use the right synchronization tool for the job

ReferencesReferences

Linux Kernel Development, 2nd edition, Robert Love,
2005
Understanding the Linux Kernel, Bovet & Cesati,
O’REILLY, 2002
Intel Architecture Software Developer’s Manual,
Volume 3: System Programming Guide, 2005
Linux 2.6.10 kernel source
RCU papers by Paul E. McKenney,
http://www.rdrop.com/users/paulmck/RCU/

	Linux Kernel Synchronization
	Term Definitions
	Examples of race condition
	Source of concurrency in �the Linux kernel
	Locking
	Deadlocks
	Lock contention and scalability
	Atomic Operations
	Overhead of atomic operations
	Atomic Operations in Linux kernel
	Atomic operations on x86
	Implementing atomic operations on x86
	Memory barriers
	Memory barriers in Linux kernel
	Example of using memory barriers
	Memory ordering of various CPUs
	Memory barriers instructions for x86
	Implementing memory barriers on x86
	Disabling Interrupts
	Interrupt Control Routines
	Disabling preemption
	Spin Locks
	Spin lock functions
	Spin lock implementation on x86
	Spin lock implementation on x86
	Spin lock implementation on x86
	Spin lock implementation on x86
	Reader-writer spin locks
	Sequence Locks
	Sequence lock implementation
	Sequence lock implementation
	volatile keyword v.s. memory barriers
	Semaphores
	More About Semaphores
	Other Synchronization Controls
	Read-Copy Update
	Read-Copy Update
	Read-Copy Update terms
	Read-Copy Update example
	Read-Copy Update primitives
	Read-Copy Update primitives
	RCU for the Linux list API
	rwlock, seqlock and RCU
	Reader-writer lock versus RCU
	Final Remarks
	References

