Linux Kernel
Interrupt Handling

Paul Chu
Hao-Ran Liu

Interrupt Basics

» What Is interrupt
— A communication mechanism for hardware components to notify CPU

of events. E.g. key strokes and timers.

— There may be one or more interrupt request lines (IRQ), which is a

physical input to the interrupt controller chip. The number of such
Inputs is limited. (eg. Classic PC has only 15 IRQ lines)

— Each IRQ has a unigue number, which may be used by one or more

components.

» Basic flow of interrupt handling

When receiving an interrupt, CPU program counter jumps to a pre-
defined address (interrupt vectors)

The state of interrupted program is saved

The corresponding service routine is executed

The interrupting component is served, and interrupt signal is removed
The state of interrupted program is restored

Resume the interrupted program at the interrupted address

» Interrupts and exceptions are handled by the kernel in
a similar way

» Interrupts
— Asynchronous events generated by external hardware,

— Interrupt controller chip maps each IRQ Input to an
Interrupt vector, which locates the corresponding interrupt
service routine

» Exceptions (Trap)
— Synchronous events generated by the software
— E.g. divide by zero, page faults

Vector range

Use

0-19 (0x0-0x13)

Nonmaskable interrupts and exceptions

20-31 (0x14-0x1f)

Intel-reserved

32-127 (0x20-0x7f)

External interrupts (IRQs)

128 (0x80) Programmed exception for system calls
129-238 (0x81-0Oxee) | External interrupts (IRQS)
239 (Oxef) Local APIC timer interrupt

240-250 (0xfO-Oxfa)

Reserved by Linux for future use

251-255 (0xfh-0xff)

Interprocessor interrupts

The table is from Understanding the Linux kernel, 2nd edition

Hardware

oooo

IRQ x

oooo

IRQY

PIC

INT

t handling in x86 Linux

Software

IDTR register

T idt_table ||

idt_ta.bré setup by trap, \nit(), it IRQ()

pushl $vector-256
common_interrupt:
SAVE_ALL

mov %esp, %eax
call do_IRQ

jmp ret_from_intr

/

A 4

do IRQ handle IRQ event

=~ =

shared , shared |,
IRQ handler 1 IRQ handler 2

» Each IRQ line is associated with an IRQ descriptor

typedefi struct kg desci 4
UnRsigned it statusy; /[IR@IStatUSE IR Progress;, disaklieds . =/
W Ire contreller =handiers; /= acks endenakle; disablenre on PIC =/
StrUCt Irgaction =actions; /FIR@ractieRHISE =/
unsignediint depig; /> nested g disables /.
spinleck H1GCKS /== sernalize access to) this structure: =/

) cachelingel alignedigldesect;

Irg_desc tirg descNRUIROSY cacheline aligned =
[0 ... NRUIRQS-1] = {
nandier = &ne g tpe;
Joecks= SPIN"COCK UNLOCKED

Flag name

Description

IRQ_INPROGRESS

A handler for the IRQ is being executed.

IRQ_DISABLED The IRQ line has been deliberately disabled by a device driver.
An IRQ has occurred on the line; its occurrence has been
IRQ_PENDING acknowledged to the PIC, but it has not yet been serviced by the

kernel.

IRQ_AUTODETECT

The kernel uses the IRQ line while performing a hardware device
probe.

IRQ_WAITING

The kernel uses the IRQ line while performing a hardware device
probe; moreover, the corresponding interrupt has not been raised.

The table is from Understanding the Linux kernel, 2nd edition

» This describes operations of a interrupt controller

struct hw_ Interrupt_type 4

/= the name: o ther PIC; showWRin /prec/Anterupts =/
CENSE chalr = LypPERamE;

/= called at first e reg. ol the kg =/

unsigned int (Gstartup)(Unsigned ntirg)s;

/= callediwhen all-handlersienr the g URregred =/
voeld (Gshutdeown)(UnRsigned incire)s;

void (Zenable)(Unsigned int ing)s /= enalle the specified IRQ =/

vord (Gdisakle)(Unsignedinpitirag); /= disakle the speciiicd IRQ =/

void (Fack)(Unsigned int ira)s; /> acke. (may disable) the received IRQ 7/
void (end)(UrRsignediint ira)s; /7= calledrat termination o IR@ handler =/
Voeldi(Eset aifimiy)(Unsigned int g, cpumasks t dest)s;

» 18259A Is the classic interrupt controller on x86

stabic struct hw IRterrupt type I8259A" Irdl type =
SXI=RIC
Startup 8259A g,
shiutdewn 8259A1 k|,
enable’ 8259A g,

disable’ 86259A g,
masks and acks 8259A;
end 8259A g,

NOIELE

» mask _and_ack 8259A() acknowledges the interrupt
on the PIC and also disables the IRQ line

» end _8259A irg() re-enables the IRQ line

We provide the preemne b i lding [l o

S jrgaction

» Multiple devices can share a single IRQ; each
Irgaction refers to a specific hardware device and Its
Interrupt handler

Struct Irgaction {4
/= POIRLS 16) thie Interrupl service routine foran l/ordevice =/
Irgretumlt (Ghandlen)(nt Veid = struct Pt fegs)5
/=1 DEescres the relatenships hetween the IR@HIne and the /0 device /.
unsigned leng flagss;
cCpumask & masks;
/= the name of the device, shewn IR /prec/Anterfupts: =/
CONSE ChaiF =hames;
/= a prvatefiieldioer the device drver =/
voeld =dev. id;
/= POIRLS ter REXt Irgacueniwhichrshiared the same IR@ine: =/
SUFUCT IFgaction; =nexis;
IREIRG /= IR@ Rumer /.
Struct prec. dir_entry =dir;

..-<~.fé:§ﬁer|ng Interrupt Handler

» Requesting to be invoked when a specific IRQ is signaled

Nt request g unRsignedint g, g handiert =handler, lenalirgilzags;

Const: chan devaame; void =dev.id)

» Irgflags
— SA _INTERRUPT: This is a fast interrupt. All local IRQs are disabled
during handler execution

— SA_SAMPLE_RANDOM: The timing of interrupts from this device are
fed to kernel entropy pool. This is for kernel random number generator

— SA _SHIRQ: the IRQ line can be shared among multiple devices
» devname: the name of the device used by /proc/interrupts
» dev id

— The unique identifier of a handler for a shared IRQ

— The argument passed to the registered handler (E.g. private structure or
device number of the device driver)

— Can be NULL only if the IRQ is not shared

» Unregister a specified interrupt handler and disable
the given IRQ line if this is the last handler on the line.

It ree kg unsigned it ira), veid =devi id)

» If the specified IRQ Is shared, the handler identified
by the dev_id Is unregistered

g
dem B e
<

robing Interrupt Line

> Problem to solve

Fail to register interrupt handler because of not knowing which interrupt
line the device has been assigned to

Rarely to use on embedded systems or for PCI devices

» Probing procedure

Clear and/or mask the device internal interrupt
Enable CPU interrupt
mask = probe_irq_on()
 return a bit mask of unallocated interrupts
Enable device’s interrupt and make it to trigger an interrupt
Busy waiting for a while allowing the expected interrupt to be signaled
Irgs = probe_irq_off(mask)
» Returns the number of the IRQ that was signaled

 If no intterrupt occurred, O is returned; if more than 1 interrupt occurred, a
negative value is returned

Service the device and clear pending interrupt

VI ting an Interrupt Handler

» Handler prototype

Intirgrestrm thandler(ntiirg), Void *=dev. id; Stuct Pt regs ~regs);
— dev_id: the dev_id you register at request_irq()
— pt_regs: value of registers before being interrupted

» Return value

— IRQ_NONE: the handler cannot handle it; the originator may be other
devices sharing the same IRQ line

— IRQ_HANDLED: the interrupt is serviced by the handler

— IRQ_RETVAL(X): if x is nonzero, return IRQ_HANDLED,; otherwise,
return IRQ_NONE

» Interrupt handler is not reentrant; while it is executing:
— its IRQ line is disabled on PIC
— IRQ_INPROGRESS flag prevents other CPU from executing it

=E=frreerrupt handler sharing IRQ

» To share an IRQ with other device, you must
— register_irq() with SA_SHIRQ flag

» The registration fails if other handler already register the same IRQ
without SA_SHIRQ flag

— The dev_id argument must be unique to each handler

— The interrupt handler must be able to find out whether its
device actually generate an interrupt
« Hardware must provide a status register for inquiry

h”lﬂh_ iy

_—

5 = E:k
reemine

Esiln c i

Staticiata index: t do ide setup) peil device (Struct peildeve*dev; .. 4
hwit==irg = dev-=ilq;
5

7definedel request rgirg,yhand;ig;dev,id)\
reguest 1rg((re)); (hand), (Ha);(dev);(d))

statichmt it g (e Wi =ik 4
nt'sa = IPE CHIPSEN IS PCl(hwif==chipset)?2SA" SHIR@:SAINHERRUP;
[del reqguest ira(awWii==irgs SId el it sa, hiwif==Rame; IWareup)s

b

Irgreturn tidel it (Intirg, veid *=dev. 1d; struct ptl reags = regs) 1
[del hwgreup t==hwgreup = (Ide. wareup. t =)devi id;
ide_difve t *drve = choose. diive(wareup)s;

SthUct requUESt ~1ds

g = eIV next request(drve-=guete)s;
start reguest(@dnve; rq)s
rettrn IRQ HANDIEEIDS

= 'l-._—v\-._

Interrupt Context

» Context
— The execution environments of a piece of code
» Process context

— Kernel is executing on behalf of a process. E.g. executing a system call.
— Because of process management mechanisms, code in process context

can sleep or be blocked

> Interrupt context

Time critical; it must finish its job quickly because it may interrupts
some real-time job (may be a process or another interrupt handler)

No backing process; interrupted process context cannot be used

Code in interrupt context cannot sleep or be blocked (i.e. you cannot
call some kernel functions that may sleep)

Configurable stack: dedicated interrupt stack (4K) or sharing the kernel
stack of interrupted process (<8K)

Both interrupt handlers and bottom halves (softirg, tasklet) run in
Interrupt context

' ffation of Interrupt Handling
by ~do IRO(

> Interrupt context is not preemptive; preemption are disabled by
Increasing preempt_count

» Process softirg only when are not in interrupt context
— Nested execution of interrupt handlers is possible

7Zdefine HARDPIRON OFESEN (L0 =< HARDIR@" SHIET)
77 define IR@T EXIIT OEESEN (HARDIR@ OFESE=15)
7define gl enter() (preempi_coeunit() += HARDIRQ OEFESEI)
Voerdig exit(verd) {4
preempicount() -= IR@EXII OEESEI;
i@l Rterrupt()r &s lecall seltirgl pending() dor soeitirg()s;
preempi_enale’ nor resched()s
'y
astcallfunsigned int dol IRQ(StruCt pil regs ~regs) 1
NG = FEJSE=0H) eax: & Oxiili;
Irg_enter(s
. dor IRQ(rg, regs)s;
Irg_exit();
et 1;

Eation of Interrupt Handling
-- __do IRQ()

» IRQ Probing
— probe_irg_on() set IRQ_WAITING for all unallocated IRQs
— IRQ_WAITING flag is cleared when interrupt signals

— probe_irq_off() checks this flag to find the IRQ number of
expected interrupt

fasteallupsigned ine doel IR@(Unsigned Rt irg, SHUCH Pl regs *Iregs)

o

Irg_desc_t *desc = Irg_desc + 1rg;
SUFUCE Irgaction = action;
Unsigned Init statusy;

/= avoid concurrent execution of the same IR@r =/
spin_lock(&desc->16cK);

desc-=handler—=ack(irg)s /= disabler IR@rat PIC=/.
statts = desc->status & —IR@ WAININGS

status = IR PENBINGS /= we wWanit to handliet =/

fiEation of Interrupt Handling
-- __do_IRQ()

» IRQ _INPROGRESS flag prevents handlers of the
same IRQ from concurrent execution

actien = INUIELES

i (ikely(((status’ & (IR DISABLED | IR@ INPROGRESS)))) ¥
action = desc->=action;
statts & — IR PENDING; /= We' commiit terhandling =/
status = IRQIINPROGRESS: /= We are handlina e =/

b

desc-=>status = status;

/*

= iFthere Is ne IRQ hiandler or Iitwas disabled; exit early:
= Since we set PENDING, Viranether precesser 1s handling
= a different instance of thisfsame kg, the other Processer:
willstake care Gl

</

P (Unlikely(laction)) aete euit;

plem :f |mtion of Interrupt Handling
o -- __do_IRQ()

» Take care of other CPUs’ interrupt by checking
IRQ PENDING flag

fIAGH) 1
Irgreturm tt acen ret;
spin Unleck(&desc==16cK)5;
actien_ret = handle IR@ event(irg, regs, action);
spin_leck(&desc->=lock)s;
i (Iikely(I(desc->=status) & IRQ@. PENIDING)))
pPreaks
desc==statts &= = 1RO PENIDINGS;

s
desc-=status & — 1RO INPROGRESS;

desc-=handler->end(irg); /= enable IR@rat PIC =/
spin_ Unleck(&desc==16ck)s
Fettrm 45

=S fation of Interrupt Handling
- - handle _IRQ_event()

» Invoke all registered handlers of the IRQ line since kernel do
not know the origin of the signaled interrupt

rastealli it handiem IR@N event(Unsigned Int Irg, Struct pil rFegs “regs,
StrUct Irgaction ~acuen) 4
It ret, retval = 0} status, = 05

IiF((@ctuenR==faags & SATINNERRUPIF))
lecalliraenabie)s /= fiast Interrupts =/
do {
et = action-=handler(iig; acueR==deVv.id; regs);
i (ret == RO HANDILED)
Status |= action==Hags;
retvalt|=ret;
aClion) = actien->=next;
- whiler (action)s;
iF(Status & SAT SAVMPLET RANDOM)
addinterfupt randemmness(irag)s;
lecal g disanle)s
returmretvals

,_;]-ef;fatlon of Interrupt Handling
- -- ret_from_intr()

» Before returning to the interrupted context, call
schedule() for a reschedule when:

— The kernel is returning to user space and need_resched() is
true

— The kernel is returning to kernel space and preempt_count()
IS zero
» The value of registers are restored and the kernel
resumes whatever was interrupted

" References

» Linux Kernel Development, 2nd Edition, Robert Love,
2005

» Understanding the Linux Kernel, Bovet & Cesati,
O’REILLY, 2002

> Linux 2.6.10 kernel source

	Linux KernelInterrupt Handling
	Interrupt Basics
	Interrupts and Exceptions
	Interrupt vectors on x86
	Interrupt handling in x86 Linux
	IRQ descriptors
	status field of the IRQ descriptor
	Interrupt controller descriptor
	i8259A interrupt controller
	irqaction
	Registering Interrupt Handler
	Unregistering interrupt handler
	Probing Interrupt Line
	Writing an Interrupt Handler
	Interrupt handler sharing IRQ
	Interrupt Handler Example
	Interrupt Context
	Implementation of Interrupt Handling-- do_IRQ()
	Implementation of Interrupt Handling-- __do_IRQ()
	Implementation of Interrupt Handling-- __do_IRQ()
	Implementation of Interrupt Handling-- __do_IRQ()
	Implementation of Interrupt Handling-- handle_IRQ_event()
	Implementation of Interrupt Handling-- ret_from_intr()
	References

