
Linux I/O Schedulers

Hao-Ran Liu

Why I/O scheduler?

Disk seek is the slowest operation in a computer
A system would perform horribly without a suitable I/O
scheduler

I/O scheduler arranges the disk head to move in a
single direction to minimize seeks

Like the way elevators moves between floors
Achieve greater global throughput at the expense of
fairness to some requests

What do I/O schedulers do?

Improve overall disk throughput by
Reorder requests to reduce the disk seek time
Merge requests to reduce the number of requests

Prevent starvation
submit requests before deadline
Avoid read starvation by write

Provide fairness among different processes

Linux I/O scheduling framework
Linux elevator is an abstract layer to
which different I/O scheduler can attach
Merging mechanisms are provided by
request queues

Front or back merge of a request and a bio
Merge two requests

Sorting policy and merge decision are
done in elevators

Pick up a request to be merged with a bio
Add a new request to the request queue
Select next request to be processed by block
drivers

elevator (sorting)

queue (merging)

block drivers

policy

mechanism

Abstraction of
Linux I/O scheduler framework

block layer
(producer)

I/O scheduler

internal
queue(s)

enqueue
functions

dequeue
functions low-level

device driver
(consumer)

sort/merge prioritize

external
queue

The relationship of I/O scheduler
functions

queue

block
driver

elevator

ll_merge_requests_fn() ll_front_merge_fn() ll_back_merge_fn()

xxx_request_fn()

elv_next_request()

elv_add_request() elv_queue_empty()

elv_remove_request() elv_completed_request()

__make_request() block layer

elv_merge()

elv_may_queue()

function calls

generic_make_request()

submit_bio()

Description of elevator functions

Type Description

elv_merge
Find a request in the request queue to be merged with a bio. The
function’s return value indicate front merge, back merge or no merge.

elv_add_request Add a new request to the request queue

elv_may_queue Ask if the elevator allows enqueuing of a new request

elv_remove_request Remove a request from the request queue

elv_queue_empty Check if the request queue is empty

elv_next_request Called by the device drivers to get next request from the request queue

elv_set_request
When a new request is allocated, this function is called to initialize
elevator-specific variables

elv_put_request
When a request is to be freed, this function is called to free memory
allocated for some elevator.

elv_completed_request Called when a request is completed

Most functions are just wrappers. The actual
implementation are elevator-specific

Flowchart of __make_request()
elv_queue_empty()

Check if the queue is
empty

get_request()
Allocate a new request
and put the bio into it

Yes

No

elv_merge()
Select a suitable request

from the queue for
merging with the bio

Front merge
(or back merge)

No merge

ll_front_merge_fn()
(ll_back_merge_fn())

Merge bio into the front
or the back of the

request

add_request()
Add the new request
into request queue Done

attempt_front_merge()
(attempt_back_merge())

Also, check if the
resulting request can be
merged again with the

neighbor

get_request_wait()
Wait for some

requests to become
available

Block queue
full?Yes

No

Merge functions at request queue

struct request_queue
{

struct list_head queue_head;
struct elevator_queue *elevator;
...
merge_request_fn *back_merge_fn;
merge_request_fn *front_merge_fn;
merge_requests_fn*merge_requests_fn;
...

}

A list of requests (external queue)

Elevator queue of this request queue

Pointers to merge functions:
ll_back_merge_fn() : back merge a request and a bio
ll_front_merge_fn() : front merge a request and a bio
ll_merge_requests_fn() : merge two requests

ll_xxx_fn() is the default set of functions for merge

The structure of elevator type

struct elevator_type
{

struct list_head list;
struct elevator_ops ops;
struct kobj_type *elevator_ktype;
char elevator_name[ELV_NAME_MAX];
struct module *elevator_owner;

};

A list of all available elevator types

elevator functions

the name of the elevator

Each request queue is associated with its own
elevator queue of certain type

struct elevator_queue
{

struct elevator_ops *ops;
void *elevator_data;
struct kobject kobj;
struct elevator_type *elevator_type;

};

the private data of the elevator

The structure of elevator
operations

struct elevator_ops {
elevator_merge_fn *elevator_merge_fn;
elevator_merged_fn *elevator_merged_fn;
elevator_merge_req_fn *elevator_merge_req_fn;
elevator_next_req_fn *elevator_next_req_fn;
elevator_add_req_fn *elevator_add_req_fn;
elevator_remove_req_fn *elevator_remove_req_fn;
elevator_requeue_req_fn *elevator_requeue_req_fn;
elevator_deactivate_req_fn *elevator_deactivate_req_fn;
elevator_queue_empty_fn *elevator_queue_empty_fn;
elevator_completed_req_fn *elevator_completed_req_fn;
elevator_request_list_fn *elevator_former_req_fn;
elevator_request_list_fn *elevator_latter_req_fn;
elevator_set_req_fn *elevator_set_req_fn;
elevator_put_req_fn *elevator_put_req_fn;
elevator_may_queue_fn *elevator_may_queue_fn;
elevator_init_fn *elevator_init_fn;
elevator_exit_fn *elevator_exit_fn;

};

These pointers point to the functions of a specific elevator

Elevators in Linux 2.6

All elevator types are registered in a global
linked list elv_list
Request queues can change to a different type
of elevator online

This allows for adaptive I/O scheduling based on
current workloads

I/O schedulers available
noop, deadline, CFQ, anticipatory

NOOP I/O scheduler

Suitable for truly random-access device, like
flash memory card
Requests in the queue are kept in FIFO order
Only the last request added to the request
queue will be tested for the possibility of a
merge

NOOP: Registration
static struct elevator_type elevator_noop = {

.ops = {
.elevator_merge_fn = elevator_noop_merge,
.elevator_merge_req_fn = elevator_noop_merge_requests,
.elevator_next_req_fn = elevator_noop_next_request,
.elevator_add_req_fn = elevator_noop_add_request,

},
.elevator_name = "noop",
.elevator_owner = THIS_MODULE,

};

static int __init noop_init(void) {
return elv_register(&elevator_noop);

}

static void __exit noop_exit(void) {
elv_unregister(&elevator_noop);

}

module_init(noop_init);
module_exit(noop_exit);

This structure stores the name of the This structure stores the name of the
noopnoop elevator and pointers to elevator and pointers to noopnoop

functions. Use functions. Use elv_registerelv_register()()

function to register the structure with function to register the structure with
the the pluginplugin interfaces of the elevatorinterfaces of the elevator

NOOP:
add request and get next request

static void elevator_noop_add_request(request_queue_t *q, struct request *rq,
int where) {

if (where == ELEVATOR_INSERT_FRONT)
list_add(&rq->queuelist, &q->queue_head);

else
list_add_tail(&rq->queuelist, &q->queue_head);

/*
* new merges must not precede this barrier
*/

if (rq->flags & REQ_HARDBARRIER)
q->last_merge = NULL;

else if (!q->last_merge)
q->last_merge = rq;

}

static struct request *elevator_noop_next_request(request_queue_t *q) {
if (!list_empty(&q->queue_head))

return list_entry_rq(q->queue_head.next);

return NULL;
}

Called by the device driver to get the next Called by the device driver to get the next
request to be submitted. If the request queue request to be submitted. If the request queue
is not empty, return the request at the head is not empty, return the request at the head
of the queueof the queue

Add a new request to Add a new request to
the request queuethe request queue

NOOP: request merge
/*
* See if we can find a request that this buffer can be coalesced with.
*/

static int elevator_noop_merge(request_queue_t *q, struct request **req,
struct bio *bio) {

int ret;

ret = elv_try_last_merge(q, bio);
if (ret != ELEVATOR_NO_MERGE)

*req = q->last_merge;

return ret;
}

static void elevator_noop_merge_requests(request_queue_t *q,
struct request *req, struct request *next) {

list_del_init(&next->queuelist);
}

Given a bio, find a adjacent Given a bio, find a adjacent
request in the request queue to request in the request queue to
be merged with.be merged with.

This function simply remove This function simply remove nextnext

request from the request queue. It is request from the request queue. It is
called after called after nextnext are merged into are merged into reqreq. .

Deadline I/O scheduler
Goal

Reorder requests to improve I/O performance while simultaneously
ensuring that no I/O request is being starved
Favor reads over writes

Each requests is associated with a expire time
Read: 500ms, write 5sec

Requests are inserted into
A sorted-by-start-sector queue (two queues! for read and write)
A FIFO list (two lists too!) sorted by expire time

Normally, requests are pulled from sorted queues. However, if
the request at the head of either FIFO queue expires, requests
are still processed in sorted order but started from the first
request in the FIFO queue

Architecture view of
Deadline I/O scheduler

Read RB tree (sorted by start sector)

Read FIFO lists (sorted by queue time)

Write RB tree (sorted by start sector)

Write FIFO lists (sorted by queue time)

Request hash table
(sorted by end sector)

deadline_insert_request

Dispatch
queue

deadline_dispatch_requests deadline_next_request

Device
driver

The sorted queues are built
on red-black trees
For back merge purpose,
requests are hashed into an
array of list indexed by the
end sector

Deadline: dispatching requests
1. If [next_req] is in the batch (adjacent to previous request and

batch count < 16), set it as [dispatch_req] and jump to step 5
2. Here, we are not in a batch. If there are read reqs and write

is not starved, select read dir and jump to step 4
3. If there are write reqs, select write dir. Otherwise, return 0
4. If the first req in the fifo of the selected data direction

expired, set it as [dispatch_req] and set batch count = 0.
Otherwise, set [next_req] as [dispatch_req]

5. Increase batch count and dispatch the [dispatch_req].
6. Search forward from the end sector of [dispatch_req] in the

RB tree of selected dir. Set the next request as [next_req]

Anticipatory scheduling
Background

Disk schedulers reorder available disk
requests for
• performance by seek optimization,
• proportional resource allocation, etc.

Any policy needs multiple outstanding
requests to make good decisions!

from http://www.cs.rice.edu/~ssiyer/r/antsched/

With enough requests…
issued by process A issued by process B

E.g., Throughput = 21 MB/s (IBM Deskstar disk)

seek

time

location on disk

from http://www.cs.rice.edu/~ssiyer/r/antsched/

With synchronous I/O…

E.g., Throughput = 5 MB/s

schedule

issued by process A issued by process B

forced!

too
late!

forced!

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Deceptive idleness

Process A is about to issue next request.

but

Scheduler hastily assumes that process A
has no further requests!

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Proportional scheduler
Allocate disk service
in say 1:2 ratio:

Deceptive idleness
causes 1:1 allocation:

BA BA

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Anticipatory scheduling

Key idea: Sometimes wait for process
whose request was last serviced.

Keeps disk idle for short intervals.
But with informed decisions, this:
• Improves throughput
• Achieves desired proportions

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Cost-benefit analysis

Balance expected benefits of waiting
against cost of keeping disk idle.

Tradeoffs sensitive to scheduling policy
e.g., 1. seek optimizing scheduler

2. proportional scheduler

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Statistics

For each process, measure:
1. Expected median and 95percentile thinktime

2. Expected positioning time

Median 95percentile

N
um

be
r

of
re

qu
es

ts

Thinktime

last next
from http://www.cs.rice.edu/~ssiyer/r/antsched/

Benefit =
best.positioning_time — next.positioning_time

Cost = next.median_thinktime

Waiting_duration =
(Benefit > Cost) ? next.95percentile_thinktime : 0

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Cost-benefit analysis
for seek optimizing scheduler

best := best available request chosen by scheduler
next := expected forthcoming request from

process whose request was last serviced

Proportional scheduler

Costs and benefits are different.

e.g., proportional scheduler:

Wait for process whose request was last serviced,
1. if it has received less than its allocation, and
2. if it has thinktime below a threshold (e.g., 3ms)

Waiting_duration = next.95percentile_thinktime

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Prefetch

Overlaps computation with I/O.

Side-effect:
avoids deceptive idleness!

• Application-driven
• Kernel-driven

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Microbenchmark

0

5

10

15

20

25

Sequential Alternate Random within file

Th
ro

ug
hp

ut
 (M

B
/s

)

Original
Anticipatory

no prefetch

no prefetch

no prefetch

prefetch

prefetch

prefetch

from http://www.cs.rice.edu/~ssiyer/r/antsched/

Proportional scheduler

0

10

20

0 10 20 30

Experimental time (seconds)

Se
rv

ic
e

re
ce

iv
ed

 (s
ec

on
ds

)

Original Anticipatory

0

30

60

90

120
Th

ro
ug

hp
ut

 (t
ps

)

Database benchmark: two databases, select queries
from http://www.cs.rice.edu/~ssiyer/r/antsched/

Work-conserving vs. non-work-
conserving

Work-conserving scheduler
If the disk is idle or a request is completed, next
request in the queue is scheduled immediately

Non-work-conserving scheduler
the disk stands idle in the face of nonempty
queue

Anticipatory scheduler are non-work-
conserving

Anticipatory I/O scheduler in
Linux
Based on deadline I/O scheduler
Suitable for desktop, good interactive performance
Design shortcomings

Assume only 1 physical seeking head
Bad for RAID devices

Only 1 read request are dispatched to the disk controller at a time
Bad for controller that supports TCQ

Read anticipation assumes synchronous requests are issued by individual
processes

Bad for requests issued cooperatively by multiple processes
Rough benefit-cost analysis

Anticipate a better request if mean thinktime of the process < 6ms and
mean seek distance of the process < seek distance of next request

Anticipatory IO scheduler policy
One-way elevator algorithm

Limited backward seeks
FIFO expiration times for reads and for writes

When a requests expire, interrupt the current elevator sweep
Read and write request batching

Scheduler alternates dispatching read and write batches to the driver.
The read (write) FIFO timeout values are tested only during read
(write) batches.

Read Anticipation
At the end of each read request, the I/O scheduler examines its next
candidate read request from its sorted read list and decide whether to
wait for a “better request”

I/O statistics for anticipatory
scheduler

Per request queue (as_data)
The last sector of the last request
Exit probability

Probability a task will exit while being waited on

Per process (as_io_context)
Last request completion time
Last request position
Mean think time
Mean seek distance

Anticipation States
ANTIC_OFF

Not anticipating (normal operation)
ANTIC_WAIT_REQ

The last read has not yet completed
ANTIC_WAIT_NEXT

Currently anticipating a request vs last read (which has
completed)

ANTIC_FINISHED
Anticipating but have found a candidate or timed out

State transitions of request
anticipation

time

ANTIC_OFF

ANTIC_WAIT_REQ

ANTIC_WAIT_NEXT

ANTIC_FINISHED

Driver ask for next req,
but last read is not
completed yet

Anticipate next read after
the last read completed.

The anticipated request is
found or anticipation
timer expire. (ref. next
slide as_antic_stop)

Last read completes
before driver ask for next
req

A close request from
other process is
enqueued,or a request
from the anticipated
process is submitted

FIFO expired or a barrier
request is submitted

FIFO expired or a barrier
request is submitted

A request is dispatched

Functions executed during the
anticipation of requests

as_completed_request

executed when a request is
completed. If the completed
request is a read, record
completion time and call
as_antic_waitnext

as_antic_waitnext

Start a timer (expire time:
6ms) to wait the next read
request.

as_antic_stop

Stop anticipation timer and
scheduler a call to request_fn
Called in 4 conditions:
1. FIFO queue expired
2. The anticipated process
submit a read or write
3. The anticipated process
exited
4. A close request is submitted
from other process

as_antic_timeout

Timer expired. Schedule a call to
request_fn

time

as_add_request

executed when a new request is
queued. If this is a read, update
the corresponding process’s
I/O statistics.Conditionally call
as_antic_stop

I/O statistics –
thinktime & seek distance

These statistics are associated with each process, but
not with a specific I/O device

The statistics will be a combination of I/O behavior from
all actively-use devices (It seems bad!)

Thinktime
At enqueuing of a new read request, thinktime = current
jiffies – completion time of last read request

seek distance
At enqueuing of a new read request, seek distance =
|start sector of the new request – last request end sector|

I/O statistics –
average thinktime and seek distance

Previous I/O history decays as new request are enqueued
Fixed point arithmetic (1.0 == 1 << 8)

tsamples
ttotaltmean

thinktimettotalttotal

tsamplestsamples

128
8

2567
8

2567

+
=

×+×
=

+×
=

Mean thinktime of a process Mean seek distance of a process

ssamples

ssamplesstotal
smean

seekdiststotalstotal

ssamplesssamples

2

8
2567
8

2567

+
=

×+×
=

+×
=

Make a decision –
Shall we anticipate a “better request”?

FIFO expire?

No

Last request is a write?

Anticipation state =
ANTIC_FINISHED?

No

Next request is from
the same process?

Process anticipated on
has exited

No

No

Next request is a close
read request from other

process?

No

Anticipation timer
expired?

No

No

Mean thinktime >
anticipation time?

No

Mean seek distance >
seek distance of next

request?

No

Wait for a better requestYes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Dispatch next request

Cooperative Anticipatory
Scheduler

Proposed in this paper: Enhancements to Linux
I/O scheduler, OLS2005
The problems of anticipatory scheduler

Anticipation works only when requests are issued by the
same process

Solution
Keep anticipating even when the anticipated process has
exited
Cooperative exit probability: existence of cooperative
processes related to dead processes

CAS: Performance Evaluation

Program 1:
while true
do

dd if=/dev/zero of=file \
count=2048 bs=1M

done

Program 2:
time cat 200mb-file > /dev/null

Streaming writes and reads Streaming and chunk reads
Program 1:
while true
do

cat big-file > /dev/null
done

Program 2:
time find . –type f –exec \

cat ‘{}’ ‘;’ > /dev/null

Scheduler Execution time
(sec)

Throughput
(MB/s)

Deadline 129 25
AS 10 33

CAS 9 33

Scheduler Execution time
(sec)

Throughput
(MB/s)

Deadline 297 9
AS 4767 35

CAS 255 34

AS failed to anticipate chunk reads AS works too well for Program 1.
Program 2 starved.

CFQv2 (Complete Fair Queuing)
I/O scheduler

Goal
Provide fair allocation of I/O bandwidth among all the
initiators of I/O requests

CFQ can be configured to provide fairness at per-
process, per-process-group, per-user and per-user-
group levels.
Each initiator has its own request queue and CFQ
services these queues round-robin

Data writeback is usually performed by the pdflush
kernel threads. That means, all data writes share the
alloted I/O bandwidth of the pdflush threads

Architecture view of CFQv2

tgid 1 queue

tgid 2 queue

tgid n queue

queue
hash
by
tgid

. . .

cfq_insert_request

R
ound robin serving

1 request at a tim
e

device queue
(sorted by sector)

cfq_dispatch_requests

Red-black tree (sorted by sector)

Read FIFO lists (sorted by queue time)

Write FIFO lists (sorted by queue time)

References

Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in
synchronous I/O, Sitaram Iyer, ACM SOSP’01
Enhancements to Linux I/O scheduling, Seetharami
Seelam, OLS’05
Linux 2.6.12 kernel source
Linux Kernel Development, 2nd edition, Robert
Love, 2005

	Linux I/O Schedulers
	Why I/O scheduler?
	What do I/O schedulers do?
	Linux I/O scheduling framework
	Abstraction of �Linux I/O scheduler framework
	The relationship of I/O scheduler functions
	Description of elevator functions
	Flowchart of __make_request()
	Merge functions at request queue
	The structure of elevator type
	The structure of elevator operations
	Elevators in Linux 2.6
	NOOP I/O scheduler
	NOOP: Registration
	NOOP:�add request and get next request
	NOOP: request merge
	Deadline I/O scheduler
	Architecture view of �Deadline I/O scheduler
	Deadline: dispatching requests
	Anticipatory scheduling Background
	With enough requests…
	With synchronous I/O…
	Deceptive idleness
	Proportional scheduler
	Anticipatory scheduling
	Cost-benefit analysis
	Statistics
	Cost-benefit analysis�for seek optimizing scheduler
	Proportional scheduler
	Prefetch
	Microbenchmark
	Proportional scheduler
	Work-conserving vs. non-work- conserving
	Anticipatory I/O scheduler in Linux
	Anticipatory IO scheduler policy
	I/O statistics for anticipatory scheduler
	Anticipation States
	State transitions of request anticipation
	Functions executed during the anticipation of requests
	I/O statistics – �thinktime & seek distance
	I/O statistics –�average thinktime and seek distance
	Make a decision –�Shall we anticipate a “better request”?
	Cooperative Anticipatory Scheduler
	CAS: Performance Evaluation
	CFQv2 (Complete Fair Queuing) I/O scheduler
	Architecture view of CFQv2
	References

