
Introduction to the Linux Kernel

Hao-Ran Liu

The history
Initially developed by Linus Torvalds in 1991
Source code is released under GNU Public License (GPL)

If you modify and release a program protected by GPL, you are
obliged to release your source code

Version Features Release Date

0.01 initial release, only on i386 May 1991

1.0 TCP/IP networking, swapping March 1994

1.2 more hardware support, DOSEMU March 1995

2.0 more arch. support, page cache, kernel thread June 1996

2.2 better firewalling, SMP performance, NTFS January 1999

2.4 iptable, ext3, ReiserFS, LVM January 2001

2.6 BIO, preemptive kernel, O(1) scheduler, I/O scheduler,
objrmap, native POSIX thread library

December 2003

Rules of Linux versioning

Maintenance release number
In this example, 2.6.11 is only
maintained before 2.6.12 is out

2.5.22 2.6.11.7

Major version number

Minor version number
Odd number denotes
development kernel

Release number Minor version number
Even number denotes
stable kernel

Features of the Linux kernel

Monolithic kernel
Do everything in a single large program in a single
address space

Allow direct function invocation between components

Microkernel, on the other hand
Modular design, the kernel is broken down into separate
processes
Use message passing interface instead of direction function call
Example: Mach, Windows NT/2000/XP

Features of the Linux kernel (cont.)
Dynamic loading of kernel modules

Runtime binding of Linux kernel and modules
Multiprocessor support

SMP, NUMA
Preemptive kernel

Since 2.6, the kernel is capable of preempting a task even if it is
running in the kernel

Threads are treated just like processes
The only difference is the sharing of memory resources

Object-oriented device model, hotpluggable events, and a
user-space device filesystem (sysfs)

The concepts of processes

Linux is a multi-user system, allowing multiple
instances of programs to be executed at the same
time
Processes

An instance of a program in execution
Execution may be preempted at any time
Concurrency by means of context switching
Independency via the support of the CPU to prevent user
programs from direct interacting with hardware
components or accessing arbitrary memory locations

User mode and kernel mode (CPU ring level)
Memory protection (paging)

Processes and tasks
Processes

seen from outside: individual processes exist
independently

Tasks
seen from inside: only one operating system is running

System Kernel with co-routines

Task 1 Task 2 Task 3

Process
1

Process
2

Process
3

Process descriptor – task_struct

Each process is represented by a process
descriptor that includes information about
the current state of the process

Type Name Description
volatile long state Current state of the process

int prio Priority of the process

unsigned long policy Scheduling policy (FIFO, round robin, normal)

unsigned int time_slice Time quantum of the process, decreased at every timer
interrupt. If zero, scheduler activates other process

pid_t pid the process ID of the process

struct thread_struct thread CPU-specific state (registers) of the process

struct list_head tasks double linked list of all process descriptors

Context switching
Context switching

Save the contents of several CPU registers into current
process’s process descriptor
Restore the contents of the CPU registers from next
process’s process descriptor

Registers to be saved or restored
Program counter and stack pointer registers
General purpose registers
Floating point registers
Processor control registers (process status word)
Memory management registers (e.g. CR3 on x86)

User mode and kernel mode

CPU runs in either user mode or kernel mode
Programs run in user mode cannot access
kernel space data structures or functions
Programs in kernel mode can access anything
CPU provides special instructions to switch
between these modes

Switching into kernel mode
CPU may enter kernel mode when:

A process invokes a system call
The CPU executing the process signals an exception
A peripheral device issues an interrupt signal to the CPU to notify it
of an event
A kernel thread is executed

Reentrant kernel

Reentrant -- several processes may be
executing in kernel mode at the same time

Interleaving of kernel control paths

Kernel control path
Kernel control path – the sequence of instructions
executed by the kernel to handle a system call, an
exception, or an interrupt
At any given moment, CPU may be doing one of
the following things

In kernel space, in process context, executing on behalf
of a specific process (system call or exception)
In kernel space, in interrupt context, not associated with a
process, handling an interrupt
In user space, executing user code in a process

Kernel mode stack

In user mode, each process runs in its private
address space

User-mode stack, data, code
In kernel mode, each kernel control path
refers to its own private kernel stack

A kernel mode stack per process
A interrupt stack for all interrupts

Kernel control path of a process

Running

Return from
system call Interrupt routine System call

Ready Waiting

Interrupt

Scheduler

Kernel control path of a process
(cont.)

Running
Task is active and running in the non-privileged user mode.
If an interrupt or system call occurs, the processor is switched to the
privileged system mode and the appropriate interrupt routine is activated

Interrupt routine
hardware signals an exception condition
E.g. page fault, keyboard input or clock generator signal every 1 ms

System call
System calls are initiated by software interrupts

Waiting
The process is waiting for an external event (e.g. I/O complete)

Return from system call
When system call or interrupt is complete
Check if a context switch is needed and if there are signals to be processed

Ready
The process is competing for the processor

Transition of process states
existing task
calls fork()
and creates

a new process

EXIT_ZOMBIE
(task is terminated)

TASK_RUNNING
(ready but

not running)

TASK_RUNNING
(running)

TASK_INTERRUPTIBLE
or

TASK_UNINTERRUPTIBLE
(waiting)

scheduler dispatches task to run:
schedule() calls context_switch() task exits via do_exit()task forks

task is preempted by
higher priority task

task sleeps on wait queue
for a specific event

event occurs and task is
woken up and placed back
on the run queue

TASK_STOPPED
(stopped)

task receives stop signal
or any signal while it is
being debugged

task receives
continue signal

Interrupts
Interrupts allows for hardware to communicate with
operating system asynchronously

Remove the need of polling from OS
Type of interrupts

Hardware generated interrupts (IRQ)
It is asynchronous! (the exact time of the delivery of an interrupt
is unpredictable)
Example: interrupt from timer or network card

Software generated interrupts (exception or trap)
It is synchronous! (generated by CPU)
Example: Page fault, divide by zero, system call

Designing interrupt handlers
Limitations that must be aware of

Interrupt handlers may interrupt other important tasks
(e.g. multimedia player) or other interrupt handlers
Runs with current interrupt level disabled or worst, all
local interrupts are disabled

Delaying the interrupt processing of other devices (think about
sharing interrupt lines)

Time critical since they deal with hardware (e.g. NIC)
Cannot block since they do not run in process context

Design goal
Interrupt handlers should execute as quickly as possible

Top halves and buttom halves
Interrupt handler may need to perform a large
amount of work

conflict with the goal of quickness
Divide an interrupt handler into two parts

Top half
Run immediately upon receipt of the interrupt
Perform only the work that is time critical

Bottom half
Runs in the future at a convenient time with all interrupts
enabled

Timers and time management
System timer (i.e. timer interrupt)

Program the hardware timer to issue interrupts
periodically
Works must be performed periodically

Update the system uptime and the time of day
Check if the current process has exhausted its timeslice and, if so,
causing a reschedule
Run any dynamic timers that have expired
Update resource usage and processor time statistics

Dynamic timer
schedule events that run once after a specified time has
elapsed (ex. Flush an I/O request queue after some time)

The tick rate: HZ

HZ macro defines the frequency of the timer
interrupt in Linux

If HZ = 100, you have 100 timer interrupts per second
On i386, HZ is 100 for 2.4 kernel and 1000 for 2.6 kernel

The pros and cons for a higher HZ
Pros: improve the accuracy of timed events and
preemption of process
Cons: less processor time available for real work, less
battery time for laptop

jiffies variable
The number of ticks that have occurred since the
system booted
jiffies variable is 32 bits or 64 bits in size
depends on the architecture
With HZ = 1000, it overflows in 49.7 days

Use macro provided by the kernel to compare tick counts
correctly

jiffies_64 (and jiffies) on 64-bit machines

031bit 63

jiffies on 32-bit machines

xtime variable

The current time of day (the wall time)
the number of seconds that have elapsed since
midnight of Jan. 1, 1970

On boot, the kernel reads the RTC (real-time
clock) and uses it to initialize xtime

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

} xtime;

The purposes of system calls

The only interfaces through which user-space
applications can access hardware resources
The benefits

An abstracted hardware interface for user-space
Nearly all kinds of devices are treated as files

Enhancement of system security and stability
Properly use of CPU time, memory

Virtualization of hardware resources
Multitasking and virtual memory

POSIX, C library and system calls

POSIX (Portable Operating System Interface)
A single set of APIs to be supported by every UNIX
system to increase portability of source codes

C library implements the majority of UNIX APIs
A C library function can be

just a wrapper routine of a system call
implemented through several system calls
not related to any system calls

syscalls in Linux
Each system call is assigned a syscall number,
which is a unique number used to refer to a specific
system call
Kernel keeps a list of all registered system calls in
the sys_call_table
A special CPU instructions is used to switch into
kernel mode and execute the system call in kernel-
space

On i386, the special instructions can be int 0x80 or
sysenter

Invoking a system call

...
xyz();
...

xyz() {
...
int 0x80
...
}

system_call:
...
sys_xyz()
...

ret_from_sys_call:
...
iret

sys_xyz() {

...
}

User mode Kernel mode

System call handler System call
service routine

Wrapper routine
in libc standard
library

System call
invocation in
applocation
program

Consideration of implementing a
system call

You need a syscall number, officially assigned to you
during a developmental kernel series
When assigned, the number and the system call
interface cannot change

or else compiled applications will break
likewise, if a system call is removed, its system call
number cannot be recycled

The alternatives
Implement a device node and use read(), write() or
ioctl()

Add the information as a file in procfs or sysfs

Files and inodes

Inode has a number of meanings
The inode structure in the kernel memory
The inode structure stored on the hard disk
Both describe files from their own viewpoint

File structures is the view of a process on
files represented by inodes

File is opened for: read, write or read+write
Current I/O position

The structure of a traditional
UNIX file system

i-list directory block data block data block

i-nodei-node
i-node

number filename

boot
block

super
block

Files and inodes (cont.)
-- two processes open the same file

current working
directory of the
process

fs

files

task_struct

fs

files

fs_struct

umask

*root

*pwd

files_struct

*close_on_exec

*fd[0]

*fd[1]

. . .

file

f_mode

f_pos

f_flags

f_count

*f_mapping

*f_op

inode

inode

inode

*f_mapping

files_struct

*fd[3]

. . .

file

. . .

Linux kernel programming
-- a different world

No access to the C library
The kernel code uses a lot of ISO C99 and GNU C
extensions

Inline assembly
Inline functions
Branch optimization with macros: likely() and unlikely()

No memory protection
No (easy) use of floating point
Small, fixed size stack
Kernel is susceptible to race conditions because of

Multi-tasking support, Multiprocessing support, Interrupts and
preemptive kernel

Kernel books

Linux Kernel Development 2nd Edition,
Robert Love, Novell Press, 2005
Understanding the Linux Kernel 2nd Edition,
Bovet & Cesati, O’REILLY, 2002
Linux Device Drivers 3rd Edition,
Corbet, Rubini & Kroah-Hartman, 2005

Useful sites about Linux kernel
Linux Weekly News, http://lwn.net

A great news site with an excellent commentary on the
week’s kernel happenings

KernelTrap, http://www.kerneltrap.org
This site has many kernel-related development news,
especially about the Linux kernel

Kernel.org, http://www.kernel.org
The official repository of the kernel source

Linux Kernel Mailing List, http://vger.kernel.org
The main forum for Linux kernel hackers

http://lwn.net/
http://www.kerneltrap.org/
http://www.kernel.org/
http://vger.kernel.org/

	Introduction to the Linux Kernel
	The history
	Rules of Linux versioning
	Features of the Linux kernel
	Features of the Linux kernel (cont.)
	The concepts of processes
	Processes and tasks
	Process descriptor – task_struct
	Context switching
	User mode and kernel mode
	Switching into kernel mode
	Reentrant kernel
	Kernel control path
	Kernel mode stack
	Kernel control path of a process
	Kernel control path of a process (cont.)
	Transition of process states
	Interrupts
	Designing interrupt handlers
	Top halves and buttom halves
	Timers and time management
	The tick rate: HZ
	jiffies variable
	xtime variable
	The purposes of system calls
	POSIX, C library and system calls
	syscalls in Linux
	Invoking a system call
	Consideration of implementing a system call
	Files and inodes
	The structure of a traditional UNIX file system
	Files and inodes (cont.)-- two processes open the same file
	Linux kernel programming-- a different world
	Kernel books
	Useful sites about Linux kernel

