
Introduction to
Linux Block Drivers

Hao-Ran Liu

Sectors and blocks

� Sector

� The basic unit of data transfer for the hardware device

� Kernel expects a 512-byte sector. If you use a different

hardware sector size, scale the kernel’s sector numbers

accordingly

� Block

� A group of adjacent bytes involved in an I/O operation

� Often 4096 bytes, can vary depending on the architecture

and the exact filesystem being used

Block driver registration

� Allocating a dynamic major number if requested

� Creating an entry in /proc/devices

int register_blkdev(unsigned int major, const char *name);

int unregister_blkdev(unsigned int major, const char *name);

� In the 2.6 kernel, the call to register_blkdev is entirely
optional

� A separate registration interface to register disk drives
and block device operations

Block device operations

int (*open)(struct inode *inode, struct file *filp)
int (*release)(struct inode *inode, struct file *filp)

Called whenever the device is opened and closed. A block driver Called whenever the device is opened and closed. A block driver might spin up the device, lock might spin up the device, lock

the door (for removable media) in the open operationthe door (for removable media) in the open operation

int (*ioctl)(struct inode *inode, struct file *filp, unsigned int cmd,
unsigned long arg)

int (*media_changed)(struct gendisk *gd)

Check if the user has changed the media in the drive, returning Check if the user has changed the media in the drive, returning a nonzero value if soa nonzero value if so

int (*revalidate_disk)(struct gendisk *gd)

This function is called in response to a media change. It gives This function is called in response to a media change. It gives the driver a chance to perform the driver a chance to perform

whatever work is required to make the new media ready for usewhatever work is required to make the new media ready for use

* Request function, register elsewhere, handles the actual read or write of data.

The gendisk structure

� the kernel’s representation of an indivisual disk device
� The kernel also uses gendisk structures to represent partitions

int major; int first_minor; int minors;

The first field is the major number of the device driver. A drivThe first field is the major number of the device driver. A drive must use at least one minor e must use at least one minor

number. A number. A partitionablepartitionable drive has one minor number for each possible partition. If minodrive has one minor number for each possible partition. If minors = 16, rs = 16,

it allows for the it allows for the ““full diskfull disk”” device and 15 partitionsdevice and 15 partitions

char disk_name[32];

The name of the disk device. It shows up in The name of the disk device. It shows up in /proc/partitions/proc/partitions and and sysfssysfs

struct block_device_operations *fops;
Struct request_queue *queue;

Structure used by the kernel to manage I/O requests for this devStructure used by the kernel to manage I/O requests for this deviceice

The gendisk structure (cont.)

sector_t capacity;

The capacity of this drive, in 512The capacity of this drive, in 512--byte sectorsbyte sectors

void *private_data;

Block drivers may use this field for a pointer to their own inteBlock drivers may use this field for a pointer to their own internal datarnal data

The gendisk API

struct gendisk *alloc_disk(int minors);

Allocation of the Allocation of the structstruct gendiskgendisk can only be done through this function. can only be done through this function. MinorsMinors is the is the

numbernumber of minor numbers this disk usesof minor numbers this disk uses

void del_gendisk(struct gendisk *gd);

Invalidates stuff in the Invalidates stuff in the gendiskgendisk and normally removes the final reference to the and normally removes the final reference to the gendiskgendisk

void add_disk(struct gendisk *gd);

This function makes the disk available to the system. As soon asThis function makes the disk available to the system. As soon as you call you call add_diskadd_disk, the disk is , the disk is

““livelive”” and its methods can be called at any time. So you should not caand its methods can be called at any time. So you should not call ll add_diskadd_disk until your until your

driver is completely initialized and ready to respond to requestdriver is completely initialized and ready to respond to requests on that disk.s on that disk.

Sbull – A real example

� The sbull driver implements a set of in-
memory virtual disk drives

� You can download the example from
O’Reilly’s website

sbull_major = register_blkdev(sbull_major, "sbull");
if (sbull_major <= 0) {

printk(KERN_WARNING "sbull: unable to get major number\n");
return -EBUSY;

}

Sbull allows a major number to be specified at

compile or module load time. If no number is

specified, one is allocated dynamically.

Describing the sbull device

� The sbull device is described by an internal
structure

struct sbull_dev {
int size; /* Device size in bytes */
u8 *data; /* The data array */
short users; /* How many users */
short media_change; /* Flag a media change? */
spinlock_t lock; /* For mutual exclusion */
struct request_queue *queue; /* The device request queue */
struct gendisk *gd; /* The gendisk structure */
struct timer_list timer; /* For simulated media changes */

};

Initialization of the sbull_dev

memset (dev, 0, sizeof (struct sbull_dev));
dev->size = nsectors*hardsect_size;
dev->data = vmalloc(dev->size);
if (dev->data == NULL) {

printk (KERN_NOTICE "vmalloc failure.\n");
return;

}
spin_lock_init(&dev->lock);

/* ... */

dev->queue = blk_init_queue(sbull_request, &dev->lock);

Basic initialization and allocation of the underlying memory

Allocation of the request queue, sbull_request is our request function –

the function that actually performs block read and write requests. The

spinlock is provided by the driver because, often, the request queue and

other driver data structures fall within the same critical section.

Initialization of the sbull_dev

(cont.)

dev->gd = alloc_disk(SBULL_MINORS);
if (! dev->gd) {

printk (KERN_NOTICE "alloc_disk failure\n");
goto out_vfree;

}
dev->gd->major = sbull_major;
dev->gd->first_minor = which*SBULL_MINORS;
dev->gd->fops = &sbull_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
snprintf (dev->gd->disk_name, 32, "sbull%c", which + 'a');
set_capacity(dev->gd, nsectors*(hardsect_size/KERNEL_SECTOR_SIZE));
add_disk(dev->gd);

Allocate, initialize and install the corresponding gendisk structure. SBULL_MINORS is the

number of minor numbers each sbull device supports. The name of the disk is set such that

the first one is sbulla, the second sbullb, and so on. Once everything is set up, we finish with

a call to add_disk. Chances are that several of our methods will have been called for that

disk by the time add_disk returns, so we take care to make that call the very last step in

the initialization of our device.

A note on sector sizes

� The kernel always expresses itself in 512-byte
sectors, but not all hardware uses that sector
size. Thus, it is necessary to translate all
sector numbers accordingly.

blk_queue_hardsect_size(dev->queue, hardsect_size);

Use this function to inform the kernel of the sector size your device supports. The hardware

sector size is a parameter in the request queue. The sbull device exports a hardsect_size

parameter that can be used to change the “hardware” sector size of the device.

A feature of the sbull device

� Sbull pretends to be a removable device

� Whenever the last user closes the device, a 30-

second timer is set; if the device is not opened

during that time, the contents of the device are

cleared, and the kernel will be told that the media

has been changed

Sbull’s block device operations

-- open()

static int sbull_open(struct inode *inode, struct file *filp)
{

struct sbull_dev *dev = inode->i_bdev->bd_disk->private_data;

del_timer_sync(&dev->timer);
filp->private_data = dev;
spin_lock(&dev->lock);
if (! dev->users)

check_disk_change(inode->i_bdev);
dev->users++;
spin_unlock(&dev->lock);
return 0;

}

The function maintains a count of users and calls del_timer_sync to remove the “media

removal” timer. check_disk_change is a kernel function, which calls driver’s

media_changed function to check if a removable media has been changed. In that case, it

invalidates all buffer cache entries and calls driver’s revalidate_disk function.

Sbull’s block device operations

-- release()

static int sbull_release(struct inode *inode, struct file *filp)
{

struct sbull_dev *dev = inode->i_bdev->bd_disk->private_data;

spin_lock(&dev->lock);
dev->users--;
if (!dev->users) {

dev->timer.expires = jiffies + INVALIDATE_DELAY;
add_timer(&dev->timer);

}
spin_unlock(&dev->lock);
return 0;

}

The function, in contrast, decrement the user count and, if indicated, start the media removal

timer. In a driver that handles a real hardware device, the open and release methods would

set the state of the driver and hardware accordingly. A block device is opened when user

space programs access the device directly (mkfs, fdisk, fsck) or when a partition on it is

mounted.

Sbull’s block device operations

-- media_changed() & revalidate_disk()

int sbull_media_changed(struct gendisk *gd)
{

struct sbull_dev *dev = gd->private_data;
return dev->media_change;

}

int sbull_revalidate(struct gendisk *gd)
{

struct sbull_dev *dev = gd->private_data;

if (dev->media_change) {
dev->media_change = 0;
memset (dev->data, 0, dev->size);

}
return 0;

}

If you are writing a driver for a nonremovable device, you can safely omit these methods.

Both of these functions are called by check_disk_change. When a device is opened and

the removable media has changed, the kernel will reread the partition table and start over with

the device.

Sbull’s block device operations

-- ioctl()

� The higher-level block subsystem code intercepts a
number of ioctl commands before your driver
ever gets to see them

� Sbull ioctl method handles only one command – a
request for the device’s geometry
� The kernel is not concerned with a block device’s

geometry; it sees it simply as a linear array of sectors

� But certain user-space utilities still expect to be able to
query a disk’s geometry

� Eg. the fdisk tool depends on cylinder information and does not
function properly if that information is not available

Sbull’s block device operations

-- ioctl() (cont.)
int sbull_ioctl (struct inode *inode, struct file *filp,

unsigned int cmd, unsigned long arg)
{

long size; struct hd_geometry geo;
struct sbull_dev *dev = filp->private_data;

switch(cmd) {
case HDIO_GETGEO:

/* Get geometry: since we are a virtual device, we have to make
* up something plausible. So we claim 16 sectors, four heads,
* and calculate the corresponding number of cylinders. We set the
* start of data at sector four.
*/
size = dev->size/KERNEL_SECTOR_SIZE;
geo.cylinders = (size & ~0x3f) >> 6;
geo.heads = 4; geo.sectors = 16; geo.start = 4;
if (copy_to_user((void __user *) arg, &geo, sizeof(geo)))

return -EFAULT;
return 0;

}
return -ENOTTY; /* unknown command */

}

Request processing

-- request function

� The place where the real work gets done

� Does not need to complete all of the requests on the

queue before it returns

� But it must make a start on these requests and ensure that
they are all, eventually, processed by the driver

� Invocation of the request function is (usually)

entirely asynchronous with respect to the actions of

any user-space process

void request(request_queue_t *queue);

Request processing

-- request queue

� Every device (usually) needs a request queue because:
� Actual transfers to and from a disk can take place far away from the

time the kernel requests them

� Kernel needs the flexibility to schedule each transfer at the most
propitious moment, grouping together requests that affect sectors
close together on the disk (I/O scheduling)

� Whenever the request function is called, the queue lock is
held by the kernel.
� It prevents the kernel from queueing any other requests for your

device

� You may want to consider dropping the lock while the request
function runs

dev->queue = blk_init_queue(sbull_request, &dev->lock);

Sbull’s request function

-- a simple request method

static void sbull_request(request_queue_t *q)
{

struct request *req;

while ((req = elv_next_request(q)) != NULL) {
struct sbull_dev *dev = req->rq_disk->private_data;
if (! blk_fs_request(req)) {

printk (KERN_NOTICE "Skip non-fs request\n");
end_request(req, 0);
continue;

}
sbull_transfer(dev, req->sector, req->current_nr_sectors,

req->buffer, rq_data_dir(req));
end_request(req, 1);

}
}

This represents a block I/O request

It obtains the first incomplete request on the queue

and returns NULL when there are no requests. It

does not remove the request from the queue.

The request has been processed sucessfully

Exclude non-filesystem request

because we don’t know how to

handle it

The index of the beginning

sector on our device (in

512-byte sector)

The number of (512-byte)

sectors to be transferred

A pointer to the buffer to

or from which the data

should be transferred

The direction of the

transfer from the

request (0 = read)

Sbull’s request function

-- sbull_transfer()

static void sbull_transfer(struct sbull_dev *dev, unsigned long sector,
unsigned long nsect, char *buffer, int write)

{
unsigned long offset = sector*KERNEL_SECTOR_SIZE;
unsigned long nbytes = nsect*KERNEL_SECTOR_SIZE;

if ((offset + nbytes) > dev->size) {
printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n",

offset, nbytes);
return;

}
if (write)

memcpy(dev->data + offset, buffer, nbytes);
else

memcpy(buffer, dev->data + offset, nbytes);
}

Problems with the simple request

function

� Executes requests synchronously, only 1
requests at a time

� Some devices are capable of having numerous

requests outstanding at the same time

� The largest single transfer never exceed the
size of a single page

Request queue

� A queue for keeping block I/O requests

� Stores parameters that describe what kinds of
requests the device is able to service
� Maximum size
� Maximum number of segments per request

� Hardware sector size, alignment requirements

� A plug-in interface allowing the use of multiple I/O
schedulers
� Improve I/O performance by accumulating and sorting

requests

� Merge of adjacent requests

Queue creation and deletion

functions

request_queue_t *blk_init_queue(request_fn_proc *request, spinlock_t *lock);

Create and initialize a request queue. The arguments are the reqCreate and initialize a request queue. The arguments are the request function for this queue and a uest function for this queue and a

spinlockspinlock that controls access to the queue. This function allocates memothat controls access to the queue. This function allocates memory and can fail because of this; ry and can fail because of this;

you should always check the return value before attempting to usyou should always check the return value before attempting to use the queuee the queue

void blk_cleanup_queue(request_queue_t *);

Return a request queue to the system. After this call, your drivReturn a request queue to the system. After this call, your driver sees no more requests from the given er sees no more requests from the given

queue and should not reference it againqueue and should not reference it again

Queueing functions

struct request *elv_next_request(request_queue_t *queue);

This function returns the next request to process or NULL if no This function returns the next request to process or NULL if no more requests remain to be more requests remain to be

processed. The request returned is left on the queue but marked processed. The request returned is left on the queue but marked as being active; this mark prevents as being active; this mark prevents

the I/O scheduler from attempting to merge other requests with tthe I/O scheduler from attempting to merge other requests with this onehis one

void blk_dequeue_request(struct request *req);

Remove a request from a queue. If your driver operates on multipRemove a request from a queue. If your driver operates on multiple requests from the same queue le requests from the same queue

simultaneously, it must simultaneously, it must dequeuedequeue them in this mannerthem in this manner

void elv_requeue_request(request_queue_t *queue, struct request *req);

Put a Put a dequeueddequeued request back on the queuerequest back on the queue

The queue lock must be hold before calling these functions

Queue control functions

void blk_stop_queue(request_queue_t *queue);
void blk_start_queue(request_queue_t *queue);

If your device has reached a state where it can handle no more oIf your device has reached a state where it can handle no more outstanding commands, you can utstanding commands, you can

call call blk_stop_queueblk_stop_queue to prevent the request function from being called until you calto prevent the request function from being called until you call l

blk_start_queueblk_start_queue to restart queue operationsto restart queue operations

void blk_queue_bounce_limit(request_queue_t *queue, u64 dma_addr);

This function tells the kernel the highest physical address to wThis function tells the kernel the highest physical address to which your device can perform hich your device can perform

DMA. If a request comes in containing a reference to memory abovDMA. If a request comes in containing a reference to memory above the limit, a bounce buffer e the limit, a bounce buffer

will be used for the operation. You can use these predefined symwill be used for the operation. You can use these predefined symbols:bols:

BLK_BOUNCE_HIGHBLK_BOUNCE_HIGH : bounce all : bounce all highmemhighmem pages. pages.

BLK_BOUNCE_ANY BLK_BOUNCE_ANY : don't bounce anything: don't bounce anything

BLK_BOUNCE_ISA BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary: bounce pages above ISA DMA boundary

Queue control functions (cont.)

void blk_queue_max_sectors(request_queue_t *queue, unsigned short max);
void blk_queue_max_phys_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_hw_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_segment_size(request_queue_t *queue, unsigned int max);

These functions set parameters describing the requests that can These functions set parameters describing the requests that can be satisfied by this device. be satisfied by this device.

blk_queue_max_sectorsblk_queue_max_sectors set the maximum size of any request in (512set the maximum size of any request in (512--byte) sectors; the default is byte) sectors; the default is

255. 255. blk_queue_max_phys_segmentsblk_queue_max_phys_segments and and blk_queue_max_hw_segmentsblk_queue_max_hw_segments both control how both control how

many physical segments (nonadjacent areas in system memory) may many physical segments (nonadjacent areas in system memory) may be contained within a single request. be contained within a single request.

The first limit would be the largest sized scatter list the drivThe first limit would be the largest sized scatter list the driver could handle, and the second limit would er could handle, and the second limit would

be the largest number of address/length pairs the host adapter cbe the largest number of address/length pairs the host adapter can actually give as once to the device.an actually give as once to the device.

Queue control functions (cont.)

void blk_queue_segment_boundary(request_queue_t *queue, unsigned long mask);

Some devices cannot handle requests that cross a particular sizeSome devices cannot handle requests that cross a particular size memory boundary. For example, if memory boundary. For example, if

your device cannot handle requests that cross a 4your device cannot handle requests that cross a 4--MB boundary, pass in a mask of MB boundary, pass in a mask of 0x3fffff0x3fffff. The . The

default mask is default mask is 0xffffffff0xffffffff

void blk_queue_dma_alignment(request_queue_t *queue, int mask);

Tells the kernel the memory alignment constraints your device imTells the kernel the memory alignment constraints your device imposes on DMA transfers. All requests poses on DMA transfers. All requests

are created with the given alignment, and the length of the requare created with the given alignment, and the length of the request also matches the alignment. The est also matches the alignment. The

default mask is default mask is 0x1ff0x1ff, which causes all requests to be aligned on 512, which causes all requests to be aligned on 512--byte boundariesbyte boundaries

void blk_queue_hardsect_size(request_queue_t *queue, unsigned short max);

Tells the kernel about your deviceTells the kernel about your device’’s hardware sector size. All requests generated by the kernel ares hardware sector size. All requests generated by the kernel are a a

multiple of this size and are properly aligned. All communicatiomultiple of this size and are properly aligned. All communications between the block layer and the ns between the block layer and the

driver continues to be expressed in 512driver continues to be expressed in 512--byte sectors, however.byte sectors, however.

The anatomy of a request

� Each request structure represents one
block I/O request; it is:
� A set of segments, each of which corresponds to

one in-memory buffer

� A set of consecutive sectors on the block device

� Implemented as a linked list of bio structures
with some information for the driver to keep
track of its position as it works through the
request

The bio -- uppermost interface

used by filesystems

� bio is issued by filesystems, virtual memory,
or a system call to read or write a block
device

� It may be merged into an existing request
structure or put into a newly created one

The bio structure

struct block_device *bi_bdev; sector_t bi_sector;

The block device to be read/write; The first (512The block device to be read/write; The first (512--byte) sector to be transferred for this byte) sector to be transferred for this biobio

unsigned int bi_size;

The size of the data to be transferred, in bytes. This macro The size of the data to be transferred, in bytes. This macro bio_sectors(biobio_sectors(bio)) returns the size returns the size

of a of a biobio in sectorsin sectors

unsigned long bi_flags; unsigned long bi_rw;

Sets of flags describing the Sets of flags describing the biobio. The least significant bit of . The least significant bit of bi_rwbi_rw is set if this is a write request. is set if this is a write request.

Use Use bio_data_dir(biobio_data_dir(bio)) to query the read/write flagto query the read/write flag

unsigned short bio_phys_segments; unsigned short bio_hw_segments;

The number of physical segments contained within this BIO and thThe number of physical segments contained within this BIO and the number of segments seen e number of segments seen

by the hardware after DMA mapping is done, respectivelyby the hardware after DMA mapping is done, respectively

The bio structure (cont.)

struct bio_vec *bi_io_vec;

An array of data structures indicating memory locations from whiAn array of data structures indicating memory locations from which data is read or writech data is read or write

unsigned short bi_vcnt; unsigned short bi_idx;

The number of I/O vectors in The number of I/O vectors in bi_io_vecbi_io_vec; ; Current I/O position in Current I/O position in bi_io_vecbi_io_vec

struct bio_vec {
struct page *bv_page;
unsigned int bv_len; // bytes to be transferred
unsigned int bv_offset; // starting at bv_offset

}

To loops through every unprocessed entry in the

bi_io_vecbi_io_vecbi_io_vecbi_io_vec array, use the macro:

int segno;
struct bio_vec *bvec;

bio_for_each_segment(bvec, bio, segno) {
/* do something with this segment */

}

Mappping the buffer of a bio

� To access the pages in a bio directly, make sure that

they have a proper kernel virtual address

� Pages in high memory are not addressable

map the i-th buffer in bi_io_vec array atomic kmap slot

map current buffer as indicated in bio->bi_idx

char *__bio_kmap_atomic(struct bio *bio, int i, enum km_type type);
void __bio_kunmap_atomic(char *buffer, enum km_type type);
char *bio_kmap_irq(struct bio *bio, unsigned long *flags);
void bio_kunmap_irq(char *buffer, unsigned long *flags);

Use these functions to ensure that the buffer in a given Use these functions to ensure that the buffer in a given biobio is addressable. An atomic is addressable. An atomic kmapkmap is is

created and a kernel virtual address is returned. The caller cancreated and a kernel virtual address is returned. The caller cannot sleep while the mapping is in not sleep while the mapping is in

used.used.

Macros to read

the current state of a bio

struct page *bio_page(struct bio *bio);

Returns a pointer to the Returns a pointer to the pagepage structure representing the page to be transferred nextstructure representing the page to be transferred next

int bio_offset(struct bio *bio);

Return the offset within the page for the data to be transferredReturn the offset within the page for the data to be transferred

int bio_cur_sectors(struct bio *bio);

Returns the number of sectors to be transferred out of the curreReturns the number of sectors to be transferred out of the current pagent page

char *bio_data(struct bio *bio);

Returns a kernel logical address pointing to the data to be tranReturns a kernel logical address pointing to the data to be transferred. Note that if the page in sferred. Note that if the page in

question is in high memory, calling this function is a bug. By dquestion is in high memory, calling this function is a bug. By default, the block subsystem does efault, the block subsystem does

not pass highnot pass high--memory buffers to your driver, but if you have changed that settmemory buffers to your driver, but if you have changed that setting with ing with

blk_queue_bounce_limitblk_queue_bounce_limit, you probably should not be using , you probably should not be using bio_databio_data

The request structure

sector_t hard_sector;
unsigned long hard_nr_sectors;
unsigned int hard_cur_sectors;

hard_sectorhard_sector is the first sector that has not been transferred. is the first sector that has not been transferred. hard_nr_sectorshard_nr_sectors is the total is the total

number of sectors yet to transfer. number of sectors yet to transfer. hard_cur_sectorshard_cur_sectors is the number of sectors remaining in is the number of sectors remaining in

the current the current biobio

struct bio *bio;

The linked list of The linked list of biobio structures for this request. Use structures for this request. Use rq_for_each_biorq_for_each_bio to traverse the listto traverse the list

char *buffer;

The simple driver example earlier use this field to find the bufThe simple driver example earlier use this field to find the buffer for the transfer. It equals to the fer for the transfer. It equals to the

result of calling result of calling bio_databio_data on the current on the current biobio

These fields are for use only within

the block subsystem; drivers should

not make use of them

The request structure (cont.)

unsigned short nr_phys_segments;

Number of Number of discinctdiscinct segments after adjacent pages have been mergedsegments after adjacent pages have been merged

struct list_head queuelist;

The linked list structure that links the request into the requesThe linked list structure that links the request into the request queue. if the request is removed t queue. if the request is removed

from the queue with from the queue with blkdev_dequeue_requestblkdev_dequeue_request, you may use this list head for other purpose, you may use this list head for other purpose

A request queue with a partially

processed request

Barrier requests

� Block layer reorders requests before submitting
them to the device drivers to improve I/O
performance

� But some applications require that certain I/O
operations complete before the others
� Journaling filesystems, relational databases

� The solution is barrier request. if a request is marked
with REQ_HARDBARRER flag, it must be written to
the drive before any following request is initiated

Barrier request control functions

void blk_queue_ordered(request_queue_t *queue, int flag);

Inform the block layer that your driver implements barrier requeInform the block layer that your driver implements barrier requests. In case a power failure sts. In case a power failure

occurs when the critical data is still sitting in the driveoccurs when the critical data is still sitting in the drive’’s cache, your driver must take steps to s cache, your driver must take steps to

force the drive to actually write the data to the mediaforce the drive to actually write the data to the media

int blk_barrier_rq(struct request *req);

If this macro returns a nonzero value, the request is a barrier If this macro returns a nonzero value, the request is a barrier requestrequest

Nonretryable requests

� If the macro returns a nonzero value on a
failed request, your driver should simply
abort the request instead of retrying it

int blk_noretry_request(struct request *req);

Request completion functions

int end_that_request_first(struct request *req, int success, int count);

Tell the block code that your driver has completed transferring Tell the block code that your driver has completed transferring some or all of the sectors in an some or all of the sectors in an

I/O request. I/O request. countcount is the number of sectors transferred starting from where you lais the number of sectors transferred starting from where you last left off. If st left off. If

the I/O was successful, pass the I/O was successful, pass successsuccess as 1. The return value indicates if all sectors in this as 1. The return value indicates if all sectors in this

request have been transferred or notrequest have been transferred or not

void end_that_request_last(struct request *req);

wakeup whoever is waiting for the completion of the request and wakeup whoever is waiting for the completion of the request and recycles the recycles the requestrequest structurestructure

end_request function

void end_request(struct request *req, int uptodate)
{

if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
add_disk_randomness(req->rq_disk);
blkdev_dequeue_request(req);
end_that_request_last(req);

}
}

This function is called in sbull’s request function

When all sectors in the request have been

transferred, we dequeue the request from

request queue and recycle it
contribute entropy to the system’s

random number pool. It should be called

only if the disk’s I/O completion time is

truly random

Work directly with the bio –

Replace sbull_request function

static void sbull_full_request(request_queue_t *q)
{

struct request *req;
int sectors_xferred;
struct sbull_dev *dev = q->queuedata;

while ((req = elv_next_request(q)) != NULL) {
if (! blk_fs_request(req)) {

printk (KERN_NOTICE "Skip non-fs request\n");
end_request(req, 0);
continue;

}
sectors_xferred = sbull_xfer_request(dev, req);
if (! end_that_request_first(req, 1, sectors_xferred)) {

blkdev_dequeue_request(req);
end_that_request_last(req);

}
}

}

Work directly with the bio (cont.)

static int sbull_xfer_request(struct sbull_dev *dev, struct request *req)
{

struct bio *bio;
int nsect = 0;

rq_for_each_bio(bio, req) {
sbull_xfer_bio(dev, bio);
nsect += bio->bi_size/KERNEL_SECTOR_SIZE;

}
return nsect;

}

Work directly with the bio (cont.)

static int sbull_xfer_bio(struct sbull_dev *dev, struct bio *bio)
{

int i;
struct bio_vec *bvec;
sector_t sector = bio->bi_sector;

/* Do each segment independently. */
bio_for_each_segment(bvec, bio, i) {

char *buffer = __bio_kmap_atomic(bio, i, KM_USER0);
sbull_transfer(dev, sector, bio_cur_sectors(bio),

buffer, bio_data_dir(bio) == WRITE);
sector += bio_cur_sectors(bio);
__bio_kunmap_atomic(bio, KM_USER0);

}
return 0; /* Always "succeed" */

}

Prepare a scatterlist for DMA

transfer

int blk_rq_map_sg(request_queue_t *q, struct request *rq,
struct scatterlist *sg);

Map a request to Map a request to scatterlistscatterlist, return number of , return number of sgsg entries setup. The returned entries setup. The returned scatterlistscatterlist can can

then be passed to then be passed to dma_map_sgdma_map_sg. Caller must make sure . Caller must make sure sgsg can hold can hold rqrq-->>nr_phys_segmentsnr_phys_segments

entries. Segments that are adjacent in memory will be coalesced entries. Segments that are adjacent in memory will be coalesced prior to insertion into the prior to insertion into the

scatterlistscatterlist. If you do not want to coalesce adjacent segments, clear the bi. If you do not want to coalesce adjacent segments, clear the bit t

QUEUE_FLAG_CLUSTERQUEUE_FLAG_CLUSTER in in qq-->>queue_flagsqueue_flags

The problem of queueing requests

� The purpose having request queue

� Optimizing the order of requests

� Stalling requests to allow an anticipated request to arrive

� Some devices does not benefit from these

optimizations

� Memory-based device like RAM disks, flash drives

� Virtual disks created by RAID or LVM

Overriding the default make

request function

� Every request queue keeps a function pointer
to its make request function, which is
invoked when the kernel submit a bio to the
request queue

� Override the default make request function
__make_request to avoid reordering and
stalling of requests

Designing your make request

function

typedef int (make_request_fn) (request_queue_t *q, struct bio *bio);

The prototype of the make request function. In this function, weThe prototype of the make request function. In this function, we can put the can put the biobio into a request into a request

in the request queue, transfer the in the request queue, transfer the biobio directly by walking through the directly by walking through the bio_vecbio_vec, or redirect it , or redirect it

to another device. to another device. Returns a nonzero value when you want to redirect the Returns a nonzero value when you want to redirect the biobio to other device.to other device.

It will cause the It will cause the biobio to be submitted again. So a to be submitted again. So a ““stackingstacking”” driver can modify the driver can modify the bi_devbi_dev to to

point to a difference device, change the starting sector value, point to a difference device, change the starting sector value, and return.and return.

void bio_endio(struct bio *bio, unsigned int bytes, int error);

Signal completion directly to the creator of the Signal completion directly to the creator of the biobio. . bytesbytes is the number of bytes you have is the number of bytes you have

transferred so far. It can be less than the number of bytes reprtransferred so far. It can be less than the number of bytes represented by the esented by the biobio as a whole. If as a whole. If

an error is encountered and the request cannot be completed, youan error is encountered and the request cannot be completed, you can signal an error by can signal an error by

providing a nonzero value like providing a nonzero value like ––EIOEIO for for errorerror parameterparameter

Sbull without queuing requests

static int sbull_make_request(request_queue_t *q, struct bio *bio)
{

struct sbull_dev *dev = q->queuedata;
int status;

status = sbull_xfer_bio(dev, bio);
bio_endio(bio, bio->bi_size, status);
return 0;

}

Never call bio_endio from a regular

request function; that job is handled by

end_that_request_first instead.

Sbull without queuing requests

(cont.)

dev->queue = blk_alloc_queue(GFP_KERNEL);
if (dev->queue == NULL)

goto out_vfree;
blk_queue_make_request(dev->queue, sbull_make_request);

Change the make request function of a request queue

This differs from blk_init_queue in that it does

not actually set up the queue to hold requests

Reference

� For detailed information, refer to

� Linux Device Drivers, 3rd edition, Chapter 16,

Block Drivers

