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Abstract

Network servers often need to process a large amount of network events asyn-
chronously. They usually use select() or poll() to retrieve events from file descrip-
tors. However, previous researches have shown that these system calls scale poorly
when the number of open connections are significantly increased. Several kernel-level
solutions have been proposed. In this paper, we first compare several event dispatch-
ing mechanisms available under Linux, and then present our user-level solution that
takes advantage of temporal locality among events while polling. We show that a
memory-based web server with our approach can have about 20%-30% performance
improvement.
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1 Introduction

As the Internet continues to grow in popularity and size, scalability of network servers is
more and more important. Network servers without good scalability will result in perfor-
mance drop or live-lock[12].

Traditional web servers, like early Apache, serve every connection with one dedicated
process. This approach simplifies code complexity, but it blocks its processes inside OS
kernel when they call system calls like read() or write(). It is operating system kernel’s
responsibility to switch contexts of processes to provide concurrent services to all connec-
tions. In most operating systems, context switching time could grows in proportion to the
number of processes in the system. When there is a large number number of connections,
a large portion of CPU time is wasted on context switches1.

1An O(1) scheduler[4] is introduced in Linux 2.5.
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struct pollfd ev_array[MAX_FD];
int num_event, ev_num, i;

while (TRUE) {
num_event = poll(ev_array, ev_num, 0);
if (num_event == 0) {

do_sleep(msec);
continue;

}

for (i = 0; i < num_event; i++) {
if (ev_array[i].revents & POLLIN)

read_handler(ev_array[i].fd);
else if (ev_array[i].revents & POLLOUT)

write_handler(ev_array[i].fd);
}

}

Figure 1: Using poll() to detect network events

Another approach, called single process event driven (SPED), is to serve all connections
in a single process. Server will not block itself waiting for any read or write on a file
descriptor, instead, nonblocking I/Os are used. It is inefficient if server calls read() or
write() operations excessively on all of these opened file descriptors to see whether they
are ready for read or write. Usually, a system call, like poll(), is used to ask kernel which
file descriptors are ready. Server then performs read or write operations on those ready file
descriptors. The goal of this approach is to reduce context switching and synchronization
overhead. Squid, a well-known web proxy cache, is based on SPED architecture. Figure 1
is a simple code demonstrating the use of poll().

Although single process event driven (SPED) architecture is more efficient than multiple
process (MP) architecture, previous studies[1, 16] have shown that poll() is not scalable;
more than 30% of CPU time is spent on such a system call on a normal squid proxy server.
The key point is that poll() performs the amount of checking overhead in proportion to
the number of file descriptors in the event array.

On a regular web server, most connections are idle, because users usually think awhile
before they click on next URL and packets may be delivered across a network that suffers
from traffic congestion. poll() spends most of time on polling useless idle connections. The
HTTP 1.1 persistent connection allows multiple requests in a single connection. As more
and more web clients support HTTP 1.1 protocol, the methods of persistent connection
will increase connection time and make server polling on idle connections performance even
worse.

The overhead of handling event detection for all connections severely limits scalability.
Most solutions proposed for this problem are based on efforts in the kernel level [1, 16, 8]
or even new operating system architectures (such as Novell’s Internet Caching System-
ICS [18] and Welsh’s Staged Event-Driven Architecture[19]). Another approach to obtain
performance improvement is to avoid data copy[14, 15] or to reduce the communication
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code path by directly interfacing with TCP/IP and overloading those event handlers with
HTTP specific processing[7].

In this paper, we focus on improving the performance of web service applications in
the user mode. We compare different event dispatching mechanisms in Linux, and give a
summary of them. Based on the observation that most web connections are idle, we present
a temporal-locality aware library for event dispatching in the user mode. It improves server
performance by reducing time spent on poll() system call, and provide better code portabil-
ity for various web applications. We conducted the performance evaluation of the proposed
library on a memory-based event-threading server. Our studies show that performance of
the server can be significantly improved by 30% or more. Programming interface and im-
plementation details of web server and library are discussed. Performance analysis is given
based on two metric: event dispatching overhead and dispatching throughput.

The rest of the paper is organized as follows. Section 2 describes various event dispatch-
ing mechanisms in Linux. Section 3 shows our polling strategy, programming interface and
how to integrate it into your own code. Section 4 talks about implementation details of the
library and important parameters in server code that may influence overall performance.
Section 5 evaluates performance of the library and other event dispatching mechanisms. We
give conclusion and future work in Section 7.

2 Event Dispatching Mechanisms in Linux

There are many event dispatching mechanisms introduced and being discussed in the liter-
ature. Some of them are already incorporated into Linux 2.4 and some are only available in
the form of kernel patch. Here we give an overview of these mechanisms and discuss their
advantages and disadvantages.

2.1 poll() and select()

poll() and select() system calls are state-based event dispatching mechanisms. They re-
port current states of a set of file descriptors specified in arguments. Their implementations
are similar with a difference in calling interface, as shown in Figure 2.

select() uses a large bitmap fd_set to represent the set of file descriptors that are
opened for reading, writing or exceptional conditions. Applications have to set the corre-
sponding bits on the three sets for all file descriptors of interest before calling select().
On return, kernel overwrites these sets with new values, which are a subset of input sets,
telling readiness of each descriptor of interest.

poll() uses an array of pollfd structure for the same purpose. events field, filled by
application, indicates events of interest of a file descriptor. revents field, filled by kernel,
indicates readiness of read, write or exception when the function returns.

When the number of file descriptors is large, select() is more suitable since fewer data is
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int select(int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout);

struct pollfd {
int fd;
short events;
short revents;

}
int poll(struct pollfd *ufds,

unsigned int nfds;
int timeout);

Figure 2: Prototype of select() and poll()

copied to and from the kernel. However, both poll() and select() are not scalable when a
server is overloaded with a large set of file descriptors. Because kernel must perform a linear
scan check on all descriptors of interest and call device driver’s poll callback respectively.
In addition, when either poll() or select() returns, application does another linear scan
on return value. Frequent execution of poll() or select() and the two linear scans make
a network server scales poorly when it is overloaded with connections.

2.2 POSIX.4 Real Time Signal

POSIX.4 real time signal [5] (RT signals) is an extension to traditional UNIX signal. It
allows multiple instances of a signal to be queued by kernel for a process. Each signal
delivery carries a siginfo payload. Information such as process ID and user ID of signal
sender process can be delivered together with a signal.

Linux 2.4 extends POSIX.4 RT signal by allowing delivery of socket readiness via a
particular real time signal. Though this feature is Linux specific, it scales pretty well with
large set of descriptors. RT signals are event-based event dispatching mechanism. Events
are put into a process-specific signal queue just at the time they arrive. This removes the
need to call expensive device driver’s poll callback functions when server application calls
get-event system call. fcntl() can associate a file descriptor with an RT signal. Associated
RT signal are usually blocked and either sigwaitinfo() or sigtimedwait() is used to
dequeue signals synchronously. Figure 3 illustrates how a RT signal is associated with a
file descriptor. Notice that asynchronous I/O must be enabled to allow the occurrence of
RT signals. Figure 4 demonstrates how RT signals are used on a single process web server.
Signals associated with file descriptors are blocked to prevent signal handlers from being
invoked. When sigwaitinfo() receives SIGIO, it means that the signal queue in the kernel
is overflowed and some events are lost. Event loss will probably make some connections
deadlock. To avoid this, we need to clean up the signal queue and fallback to traditional
poll() or select() to check all file descriptors. Notice that the program in Figure 4 always
calls poll() first. This prevents events from being lost when any event comes between
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// accept a new connection
int sfd = accept(conn, ...);

// associate an RT signal with a connection
fcntl(sfd, F_SETSIG, SIGRTMIN);
// set the process ID to receive the signal
fcntl(sfd, F_SETOWN, getpid());

// Enable nonblocking and asynchronous I/O
fcntl(sfd, F_SETFL, O_NONBLOCK | O_ASYNC);

Figure 3: Associating an RT signal with a connection

accept() and fcntl(F_SETSIG, ...) system calls. When server application accepted a
new file descriptor, it needs to poll the descriptor first before receiving RT signals from it.

Chandra and Mosberger introduced signal-per-fd [2] to prevent signal queues from over-
flow. It collapses multiple events of the same file descriptor. If the length of signal queue is
equal to the maximum number of file descriptors a process can have, no overflow of signal
queue will happen. Although this prevents the signal queue from overflow, the code related
to poll() is still necessary. Because RT signals do not return an initial state of a file
descriptor when a file descriptor is associated with a RT signal. Luban’s Linux patch for
signal-per-fd is available at [17].

One disadvantage of RT signals is the complexity of server code comparing to that
of other mechanisms. Yet another one is that only one readiness event can be fetched per
sigwaitinfo() call. This leads to many switches between user mode and kernel mode. The
advantage of RT signals is that it is scalable and users can associate some descriptors with
one signal, while some with another. This divides file descriptors into several ”interesting
sets”, allowing server to process them differently.

2.3 /dev/poll

/dev/poll[9] is first introduced in Solaris 7 in order to remove the need to specify interesting
set on every poll(). It is a state-based event dispatching mechanism. The idea behind it
is that applications can open the device file to build a set of descriptors of interest inside
kernel. This set is built gradually after every acceptance of a new connection. The process
of building a interesting set is separated from that of event retrieval. This can reduce
the amount of interesting set information copied between user space and kernel space.
Interesting sets are built by writing pollfd structure to an opened /dev/poll. Server
application use ioctl() to fetch events from kernel, which in turn calls device driver’s poll
callback functions to find the state of registered descriptors. Figure 5 explains how to use
/dev/poll on a network server. Banga proposed declare_interest[1] early in 1999 and
/dev/poll is the first approximate implementation of the idea.

Provos[16] implements this idea on Linux. The implementation caches latest results from
device driver poll callback functions. Given a file descriptor, if there is no event between two
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struct pollfd ev_array[MAX_FD];
struct timespec wtime = {0, 0};
sigset_t sset; siginfo_t sinfo;
int to_poll = 1, num_event, ev_num, i;

// block SIGIO and SIGRTMIN
sigemptyset(&sset); sigaddset(&sset, SIGIO); sigaddset(&sset, SIGRTMIN);
sigprocmask(SIG_BLOCK, &sset, NULL);

while (TRUE) {
if (to_poll) {

num_event = poll(ev_array, ev_num, 0);
to_poll = 0;

// call read or write handler if there is any event.
} else {

while (sig = sigtimedwait(&sset, &sinfo ,&wtime) > 0) {
if (sig == SIGRTMIN) {

if (sinfo.si_band & POLLIN)
read_handler(sinfo.si_fd);

else if (sinfo.si_band & POLLOUT)
write_handler(sinfo.si_fd);

} else if (sig == SIGIO) {
// signal queue overflow, call poll() at next loop
to_poll = 1;
// clean signal queue
while (sigtimedwait(&sset, &sinfo, &ts) > 0);

}
}

}
}

Figure 4: Handling network events with RT signals

6



/* struct dvpoll {
* struct pollfd *dp_fds;
* int dp_nfds;
* int dp_timeout; } */
int i, num_event, dpfd;
struct pollfd fds[MAX_FD];
struct dvpoll dp = {fds, 0, 0};

dpfd = open("/dev/poll", O_RDWR);
while (TRUE) {

num_event = ioctl(dpfd, DP_POLL, &dp);
if (num_event == 0) {

do_sleep(msec);
continue;

}

for (i = 0; i < num_event; i++) {
if (fds[i].revents & POLLIN)

read_handler(fds[i].fd);
else if (fds[i].revents & POLLOUT)

write_handler(fds[i].fd);
}

}

Figure 5: /dev/poll on a network server

ioctl() wait event call, previous cache result will be used for the second ioctl() and the
corresponding device driver poll callback function will not be executed. On the contrary,
if there is any event, device driver marks corresponding cache entries dirty. At the next
execution of ioctl(), dirty descriptors will be polled.

Since Provos’s implementation of /dev/poll is state-based, there is no problem about
event collapsing or event queue overflow. /dev/poll also allows multiple interesting sets in
Linux kernel. Libenzi[8] also shows an event-based implementation called /dev/epoll1.

2.4 Summary

RT signals are event-based and reported events may not be the latest states of file de-
scriptors. /dev/poll, like select() and poll(), is state-based and reported events are
always the states of file descriptors at the polling time. Both RT signals and /dev/poll
are new scalable event dispatching mechanisms supported by Linux kernel. However, these
features are not available on all platforms. RT signals is officially supported since Linux
2.4 and /dev/poll is only available with kernel patch. Table 1 summarize those features
of all mechanisms discussed above. In Section 5, we will evaluate performance of event
dispatching mechanisms available in Linux 2.4.

1/dev/epoll is incorporated into Linux 2.5.
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features Scalable to Event Dequeue Event
large set collapsing multiple queue
of file events per overflow

methods descriptors system call
select() No NA Yes NA
poll() No NA Yes NA
/dev/poll1 Yes NA Yes NA
RT signals Yes No No Yes
RT sig-per-fd1 Yes Yes No No
declare_interest2 Yes Yes Yes Yes

Kernel fallbacks Return initial Maintain multiple
to traditional state of FDs on interesting sets

poll() when event declaration of in kernel for
queue overflow interesting sets per process

select() NA NA NA
poll() NA NA NA
/dev/poll NA NA Yes
RT signals No No Yes
RT sig-per-fd NA No Yes
declare_interest Yes Yes No

Table 1: Comparison of various event dispatching mechanisms

3 Proposed Solution: Temporal-locality-aware Poll

Most traffic of a TCP connection has the property of temporal locality. Packets usually
arrive in a burst. The definition of temporal locality here is slightly different from that of
the traditional way. Traditional definition is about repeated references to the same object
in a short time. Here, it is the tendency for a process, once it receives a network packet,
to receive a sequence of other packets within a short time. Many researches have shown
or exploited the property. Mogul[11] shows the characteristics of persistence and temporal
locality at the scale of processes in a LAN environment. Many PCB-lookup algorithms also
exploit the property for faster TCP demultiplexing[10].

Temporal locality can be observed at larger scale too. An obvious example is HTTP
persistent connection. Usually, A bulk of HTTP requests are sent in a single connection
to a web server when browser opens a new page. HTTP requests usually arrive at a web
server in a burst during a short period of time.

In the life time of a HTTP connection, it is idle most of the time. Either there is no
event for a long time or there are many events in a short time. If a web server is loaded
with many connections, most file descriptors in a single poll() loop have no event at all.
This means that most calls to poll() is redundant. No matter how few events there are,
the cost spent on poll() is the same. This tragedy is caused by the improper design of
poll() interface. The two linear scans of a long descriptor event array, one inside kernel

1Use of these mechanisms needs kernel patch. They are not available in Linux 2.4.
2declare interest[1] is listed only for reference. There is no Linux ported version.
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Figure 6: Architecture view of event dispatching library

and one outside kernel, are the main performance bottleneck we want to overcome.

The idea of temporal-locality-aware poll() is: since a file descriptor is idle most of the
time, it doesn’t need to be polled at every poll loop. It should be polled only when it is
likely to have events in recent future. Future events of a descriptor can be predicted based
on its event history. Instead of estimating event’s arrival time, we associate a counter with
every descriptor. At each loop of polling, the counter is increased by one if there is a event;
otherwise, it is decreased by one. All file descriptors, by default, are divided among three
polling sets according to this counter. The frequency of calling poll() system call for each
set are different. In this way, much time wasted on idle file descriptors is saved and active
file descriptors are checked more efficiently.

All server applications, not just web server, featuring the property of temporal locality
and a large percentage of idle connections will benefit from the idea. Proxy server and
telnet server, for example, are this type of servers. FTP server, on the contrary, does not
fit into this type.

3.1 Proposed Library Interface

Our library is a user-mode library, layering between server application and kernel system
call. We named it FDM (File Descriptor Management Library), because its goal is to
manage all file descriptors in a server application. During the life time of file descriptors,
file descriptors are kept in one of the three polling sets in the library, and are polled by
the library according to its live counter. Figure 6 illustrates the architecture of the library.
Figure 7 shows the function prototypes of the library.

In the library, we have separate functions for specifying file descriptors of interest and for
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typedef struct {
int fd;
short events;
void *payload;

} fdm_event_t; // data structure return by wait event
extern int fdm_setnum;
extern int fdm_default_live_counter;

int fdm_start(); // library init
int fdm_stop(); // library shutdown
int fdm_reg_fd(const struct pollfd *fds, int lock);
int fdm_unreg_fd(int fd);

// tell library if a fd is read interest or write interest
int fdm_update_fd_mode(const struct pollfd *fds,

void *payload,
struct timeval *tv);

int fdm_wait_event(fdm_event_t *ev_array,
unsigned int array_size,
int timeout);

Figure 7: Interface of event dispatching Library

retrieving events. Server may register a file descriptor with fdm_reg_fd() once it is created
by accept(). Initially, fdm_reg_fd() puts the descriptor specified in first argument into
most frequently polling set. All registered file descriptors will migrate between three polling
sets depending on their respective live counters. The second argument specifies whether or
not to lock the descriptor specified in the first argument from migrating between polling sets.
If a file descriptor is locked, it stays in most frequently polling set regardless of the value of
its live counter. Listening sockets are usually being locked to achieve better performance.
This concept is similar to multi-accept [2]. Because all connections and events of connections
are derived from accept() of listening sockets, limiting the polling frequency of listening
sockets will limit the performance of server. Besides, listening sockets have little temporal
locality. Polling frequency of each polling set is discussed in next section.

fdm_wait_event() is used to receive network events. It creates a new polling set from
the three polling sets and invokes poll() on the new set. array_size specifies the size of
memory space pointed by ev_array. ev_array stores retrieved events when the function
returns. timeout specifies the time to wait before function returns if there is no event.
Internally, this parameter is passed directly to poll() system call.

Given a file descriptor, server application may be interested in either reading or writing
events, but not both, at the same time. It waits for either a read ready event before reading
data or a write ready event before writing output. Server application must specify current
interest in either read or write of a file descriptor before calling fdm_wait_event(). This
is done through fdm_update_fd_mode(). Current interest of a file descriptor are specified
in events field of fds argument.

In general case, server application may need to maintain an array or a hash table to keep
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track of the mapping between a file descriptor and its threading or callback data structure
(these data structure are needed in a SPED server). When application retrieves some
events from kernel, file descriptors associated with these events are searched throughout
the mapping array or hash table for their threading or callback data structures. Server
needs a threading (or callback) data structure to resume the execution of a thread (callback
function) that deals with a specific connection.

To remove the need for the server application to maintain another mapping data struc-
ture mentioned above, the data structure for file descriptor maintained in this library has
an additional payload field. It saves the address of associated threading or callback data
structure. The data structure for events returned by fdm_wait_event() also carries a pay-
load field. payload is a void pointer that can point to anything like threading or callback
data structure.

In addition, server applications may need to close a timeout connection if it is idle for
a long period. The feature support in this library can remove another time-stamp array
(also the corresponding linear search) in server code. Both of the threading (callback)
data structure and the timeout time-stamp of a file descriptor can be updated through
fdm_update_fd_mode().

fdm_unreg_fd() removes a file descriptor from the polling sets of the library. This func-
tion is usually called when the associated connection is closed. fdm_setnum and
fdm_default_live_counter are two parameters that gives users more flexibility to se-
lect how many polling sets to create and to decide the polling frequency of each polling set
besides default setting.

4 Implementation Details

4.1 Polling Frequency

Polling frequency will influence the response time of a connection and overall throughput
of the web server. poll() is invoked on every fdm_wait_event() call; however, not all
three polling sets are polled. It depends on the value of default live counter. Assuming that
default live counter is N , then active polling set is polled on every fdm_wait_event() call,
doze polling set is polled on every N calls and idle polling set is polled on every N2 calls.
A file descriptor is downgraded from active to doze or doze to idle if there is no event for
N − 1 or N2 −N calls, and is upgraded from idle to active or doze to active if events are
detected twice in two consecutive calls.

A file descriptor is initially put into active polling set once registered. If it has no event
for N − 1 fdm_wait_event() calls, it falls into the category of second polling set, because
second polling set assumes file descriptors inside it have events every N fdm_wait_event()
calls. The same logic holds true for descriptors downgraded from second polling set to the
third one.

Since poll() has a state-based view of events, the time when a event occurs is unknown.
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There is no way to determine the frequency of events of a file descriptor exactly; so the
best way is to poll them on different frequency and let all file descriptors fall into the best
categories by themselves. Although a more frequently polling can be used to better predict
frequency of events, this approach cannot be used since it conflicts with our goal to reduce
the polling time of idle file descriptors.

When a descriptor has two events in two consecutive poll() calls, we upgrade it to
active polling set immediately. This is because of the property of temporal locality of
network events. Other events for the same descriptor may arrive very soon. Our upgrade
strategy keeps a fairly well response time for server application using this library.

In our experience, when web server is overloaded, we found out that a small value of N
maintains a good response time yet good improvement on throughput. A medium value of
N further improves throughput but the response time is longer. A large value of N renders
locality-aware poll() useless, because most file descriptors will not downgrade and stay at
active polling set. This results in long, large standard deviation of response time and worst
throughput (some downgraded connections will suffer unacceptable response time). Our
experience shows that a feasible value of N is between 3 and 10.

Figure 8 shows the influence of default live counter on reply rate and response time of a
memory-based web server. In this experiment, we establish 1000 persistent connections to
the server. Each connection sends a request every 2 seconds, so that total request rate is
fixed at 500 requests per second. This simulates 1000 users browsing the web with 2 seconds
think time. N influences the response time of requests significantly. We take advantage
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of both, saving CPU time on polling more active descriptors and good response time, only
at small value of N . With large value of N , temporal-locality-aware poll() approximates
to plain poll() because file descriptors are not differentiated. Notice that response time
and throughput doesn’t always increase or decrease with the increase of N . The reason is:
When N < 400, most file descriptors fall into idle polling set and increasing N may also
decrease the polling frequency of idle set. This limits the number of events a server can
have and the reply rate drops too. However, when N is increased from 400 to 800, more and
more descriptors in idle polling set are moving to doze polling set along with the increase
of N ; i.e. the number of descriptors in doze polling set is increased and polling frequency is
increased from every 4002 wait event calls to every 800 calls. So reply rate increases again.
At N > 800, most descriptors fall into doze polling set; further increase of N decreases
polling frequency and thus limits the number of events, making performance worse.

4.2 Multiple Threads Implementation

Gooch[6] mentioned the idea of dividing file descriptors among two threads. One thread
polls mostly active file descriptors, another one polls the rest. However, multiple threads
implementation is impractical. There are two reason. First, the overhead of synchronization
and context-switching between threads will limit the performance of a server. Second,
poll() is invoked by all threads asynchronously. Polling frequency of each threads are
determined by their respective sleep time, which is regulated by 10ms Linux timer. However,
10ms is so long that server is sleeping most of the time. This results in a long response time
and poor throughput on the server.

In fact, we do have a multi-thread implementation of our library. It has worse per-
formance than a simply poll(). Even with a multiple threads implementation, polling
frequencies of three polling sets are still under exponential relationship, limited by the same
reason that poll() is state-based and event arrival time is unknown. It is not beneficial to
server applications.

4.3 Web Server Sleep Threshold

Web server sleep threshold is the number of consecutive wait event calls without any event
before web server sleeps. If the number of this kind of wait event calls reaches the threshold,
web server is put into sleep.

When there are too few events to keep the server busy, put the server into sleep is often
desired. However, as just mentioned, granularity of Linux timer is too coarse. If server is
always put into sleep when there is no event. Server may sleep too much and have a lower
throughput.

Sleep threshold is machine dependent, because a fast machine consumes events more
quickly and is more likely to reach the sleep threshold than a slow one. Fast machine
needs to have larger sleep threshold to prevent it from limiting the processing power. Sleep
threshold is also event dispatching mechanism dependent. A scalable, fast event delivery
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mechanism like /dev/poll or RT signals needs to sleep less frequently too, for the same
reason.

Notice that the value of default live counter must be considered together with web server
sleep threshold. Larger value of default live counter generally decreases the number of file
descriptors to be polled, making event delivery faster too. In conclusion, a high performance
web server requires fine tunes of sleep threshold.

5 Performance Evaluation

This section shows the performance of memory-based web server on event dispatching mech-
anisms available in standard Linux 2.4, including our user-mode solution. We describe eval-
uation environment and the implementation of our test web server. Server performance is
evaluated on two metrics: dispatching overhead and dispatching throughput.

5.1 Evaluation Environment

To test various event dispatching mechanisms on a event-driven web servers, we modify
dphttpd [8] to take advantage of our event-driven threading architecture. dphttpd is a very
simple memory-based web server which does very simple HTTP protocol processing. It
allows us to focus on performance of various event dispatching mechanisms without other
constraints like disk I/O. Event-threading architecture provides both the advantage of easy
programming and event-driven architecture to network servers application. It minimizes
synchronization and kernel context-switching overhead by associating every connection with
a user level thread. Context switches between user level threads happen only when a user
level thread explicitly gives up control by waiting for I/O completeness or calling schedule
yield function.

On our modified memory-based event-driven web server, three event dispatching mech-
anisms: poll(), temporal locality-aware poll and RT signals, all of them are available in
standard Linux 2.4 without patch, are implemented. Many Parameters on the web server
are optimized separately for each event dispatching mechanisms. Server sleep threshold is
fine tuned for maximum performance. Our server does multiple accept() on a listening
socket descriptor when poll() reports a ready event on such a descriptor. This strat-
egy minimizes the effect of poll() overhead. Because more connections are accepted and
more useful works will be identified by follow-up poll(). The overhead of poll() are
amortized(multi-accept [2]).

In the experiment, server runs on a Pentium III 600MHZ, 128MB RAM machine. Client
loads are generated from three Pentium III 1GHZ, 512MB RAM machine with httperf[13].
Idle connections are made from another low-end machine. All machines are equipped with
a Intel EtherExpress Pro 100 ethernet card, and connected together within a single 100Mb
ethernet LAN.
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Figure 9: Event dispatching overhead in terms of number of idle connections

5.2 Dispatching Overhead

Dispatching overhead experiment simulates the condition when a web server is loaded with
large number of slow, long distance, idle connections. To see the influence of these connec-
tions, web server is not overloaded. Request rates are fixed at comparatively light load. We
measure the overhead of request handling as a function of number of idle connections.

Figure 9 shows the influence of such overhead on web server reply rate and response
time. RT signals mechanism provides a stable reply rate and very short response time.
Although RT signals mechanism is scalable, idle connections still incurs small overhead on
RT signals (Figure 9(b)). Because web server has to maintain an array of timeout stamp
and pollfd data structure on every connection. On a regular web server, idle connections
are timeout and disconnected when there is no activity for a period of time. To show the
effect of overhead maintaining these arrays, code maintaining pollfd array and scanning
through time-stamp array for timeout connections remains in our test web server, but
timeout connections are not disconnected.

When the number of idle connections is less than 3000, FDM (temporal-locality-aware
poll) has equal reply rate comparing to plain poll(), but a slightly longer response time.
The reason is that the polling time (money) saved by FDM is less than the time (cost)
spent on polling set management. Notice that the response time on a plain poll() system
grows linearly with number of idle connections. When the number of idle connections
is greater than 3000, a large portion of time wasted in a plain poll() system can be
saved in a event-locality-aware system. The time saved is greater than the time spent
on polling set management and is invested in active file descriptors with more frequently
fdm_wait_event() calls. This results in shorter response time for FDM comparing to the
response time for plain poll().
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Figure 10: Server performance with 1000 idle connections

5.3 Dispatching Throughput

In dispatching throughput experiment, we want to see how much throughput a web server
can achieve when the server is given a fixed number of idle connections. The performance
is measured as a function of request rates. RT signals with poll() and RT signals with
select() are evaluated respectively to see the problem of poll() when it is used to recover
the server from RT signal queue overflow.

Figure 10 shows server performance with 1000 idle connections. Notice that all mecha-
nisms scale pretty well with respect to the reply rate (Figure 10(a)). Request rate beyond
10000 requests per second is not feasible since throughput is limited by 100Mbit ethernet.
Because we implement multi-accept on plain poll() test server, the reply rate of plain
poll() is comparatively good. However, poll() is inherently not scalable to a large num-
ber of connections. Time spent on event detection is too long to maintain good response
time when request rate increase. In Figure 10(b), you can see the response time of plain
poll() increases with request rate. We also observe that the response time of poll() is a
lot longer than that of RT signals even at light load, since overhead of 1000 idle connections
is there for poll() no matter how request rate is. Under unscalable poll(), FDM improves
response time with different polling strategy, but it can’t change the fact that underlying
mechanism costs time in proportion to number of connections. So response time of FDM
increases with the increase of request rate.

To further observe the behavior of FDM library and RT signals, In Figure 11, we increase
the number of idle connections to 6000. The advantage of FDM is clear and obvious. FDM-
based web server delivers highest throughput and shortest response time.

However, it is surprising that the performance of RT signals(poll) falls behind even
that of traditional poll() when request rate are greater than 4000 req/sec. The reason
is because we use poll() to handle lost event when the signal queue is overflowed. To
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Figure 11: Server performance with 6000 idle connections

use poll() with RT signals, web server has to prepare and maintain a pollfd array for
such signal queue overflow emergency. Rearranging this pollfd array on every several
sigtimedwait() calls and the timeout time-stamp array is costly and costs CPU time in
proportion to the number of idle connections. At 6000 idle connections, RT signals web
server spends much more time on the work we just mentioned than the time spent at 1000
idle connections. When client request rate is greater than 4000 req/sec, signal arrival rate
become faster than signal dequeue rate. This results in many SIGIO signal queue overflow
events and significantly increase of response time. This scenario of performance drop can’t
be observed when server is loaded with just 1000 idle connection.

Though, RT signals web server can be improved by replacing poll() with select() to
eliminate the need to maintain a pollfd array. select()’s bitmap parameters allow direct
access to any file descriptor’s event fields. Thus, linear scan and maintenance of pollfd
array are eliminated. The overhead of finding timeout connections can also be alleviated
by reducing times of scan on timeout time-stamp array.

Figure 11 also shows the performance improvement of RT signals(select) over RT sig-
nals(poll). The reply rate and the response time of RT signals(select) is the best over all
event dispatching mechanisms when request rate is smaller than 8000 req/sec. When re-
quest rate is greater than 8000 req/sec, excessively switching back and forth between RT
signals and select() when RT signal queue is overflowed makes the performance drop.
The performance of FDM also starts overtaking RT signals (select) at 8000 req/sec. RT
signal queue overflow problem greatly influences the performance of both RT signals(poll)
and RT signals(select) at different load.
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6 Future Work

In our library, the responsiveness and performance of a server are controlled together by
default live counter and sleep threshold, but responsiveness and performance conflicts and
cannot be achieved at the same time. If there is an adaptive solution which can automati-
cally pick the most feasible default live counter and sleep threshold, users would not have
to worry about tuning these parameters. However, choosing these parameters depends so
heavily on CPU processing power, the version of operating system kernel, the type of your
service and workload characteristics that we have not found a simple and practical solution
yet. Typically, System profiling and workload trace are generally required.

GNU Portable Threads[3] is a user-space thread library with an interface combining
thread management and event handling. Different type of events can be placed in a data
structure called event rings, and threads can block on these event rings. It frees programmers
from managing another thread library, but it is not temporal-locality-aware. We manages
to incorporate the idea of temporal locality into this library in the future.

7 Conclusion

In this paper, we summarized the advantages and disadvantages of various event dispatching
mechanisms. select() and poll() suffers from poor scalability and long response time
when the number of connections is large. /dev/poll and RT signals are two scalable
mechanisms available in Linux 2.4. /dev/poll caches latest poll result and do not poll a
file descriptor again if there is no state change. RT signals mechanism scales well but has
signal queue overflow problem. Our proposed user-mode library solution extends poll()
by exploiting temporal locality property among events in a file descriptor. This approach
provides good code portability and reduces total number of descriptors to be polled and
more CPU time is saved for useful work.

It is surprising that the performance of RT signals web server is not scalable when it is
loaded with 6000 idle connections. This is because of the excessively switching between the
two mechanisms, poll()(or select()) and RT signals, when RT signal queue is overflowed.
RT signals(poll) server has worse performance than RT signals(select) one. The overhead
of maintaining pollfd array associated with poll() is very large and will slow down event
processing speed. We concluded that select() should be used to protect RT signals when
signal queue is overflowed.

Availability

The temporal-locality-aware poll library and related program mentioned in this paper is
available at http://www.cs.ccu.edu.tw/~lhr89/fdm/.
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