
A Scalable Event Dispatching 
Library for Linux Network Servers

Hao-Ran Liu and Tien-Fu Chen

Dept. of CSIE
National Chung Cheng University



Traditional server:
Multiple Process (MP) server

A dedicated process to every connection.
Concurrency is provided by OS.
Disadvantage

Context-switching overhead
Synchronization overhead
TLB miss rate

Example
Apache

Process 1 Process 2

Kernel

Connection 2Connection 1



Modern server:
Single Process Event Driven (SPED) server

User level concurrency within a single process.
Nonblocking I/O
A mechanism to detect I/O events

Disadvantage
Influenced by inefficient design of event 
dispatching mechanism in OS kernel
A single page fault or disk read suspends whole 
server.

Example
Squid web cache



Event-driven server architecture
User thread context or
Connection processing context

Single process

Kernel

Connections



Problem statement and our goal

The problem
Inefficiency design of event dispatching 
mechanism

Our goal
Improve the performance of SPED servers 
in user-mode.



A list of event dispatching mechanisms

Scalable
Devpoll (Solaris 8)
RT signals (Linux)
I/O completion port (Windows 2000)

Non-scalable
select() (POSIX)
poll() (POSIX)



poll() and select()
Event dispatching mechanisms in Linux

select() or poll() scales poorly with large 
set of file descriptors.

30% of CPU time are spent on select() 
in a overloaded proxy server (Banga 99)



Interface of select() and poll()



Source of overhead on poll()
Read/write handlerStep by step:

, array copyPoll() is called

ev_arrayLinear scan in kernel
User

Driver poll callback

Kernel
, array copyPoll() return

ufds
Linear scan in app.

Read or write handler

Device driver poll()



Source of overhead on poll()

Linear scan of ev_array and call device 
driver’s poll callback function.
Linear scan in server application to 
detect network events.
Most work are wasted for idle 
connections.



POSIX.4 Real Time Signal
Event dispatching mechanisms in Linux

POSIX.4 RT extension allows signal delivery with a 
payload.

sigwaitinfo(), sigtimedwait()
Payload can carry sender PID, UID, etc.

Linux extension of POSIX.4 RT signal
Allow delivery of socket readiness via a particular real time 
signal.

Pro
Official support in Linux kernel since version 2.4

Con
Linux specific



Flowchart of POSIX.4 Real Time Signal
Network events

Sig
no

FD
no

event
type RT signal queue

kernel

user

sigtimedwait()

Read/write a FD



Problems in RT signals

Edge-triggered readiness notification
Signal queue may contain multiple events of a FD
Stale event

Kernel signal queue size limit. 
2048 entries

RT signal queue overflow
Some connections will fall into deadlock state.



Solution to RT signal queue overflow

Application solution
Server falls back to traditional select()  or 
poll()

Kernel solution
Signal-per-fd [Chandra 01]

Collapse events of the same file descriptor
(signal queue size == max no. of files a 
process can open) => no signal queue 
overflow



Our solution to reduce poll() overhead:

Scalable event dispatching library

Motivation
Web connections are idle most of the time.
Network events in a single HTTP transaction are bursty.

Our strategy
Save the time wasted on idle connections for more useful 
works.

The frequency of calling poll() on a idle connection is 
decreased.
Average number of file descriptors at every poll() is decreased.

Exploit temporal locality among events in a connection to 
reduce the frequency of calling poll() on a FD.



Live counter and polling sets:   
Keys to implement locality poll()

A live counter is associated with a file 
descriptor. On every poll() to the FD:

If event is detected, counter increases.
If no event is detected, counter decreases.

All FDs in a server are divided into three sets 
according to their live counter. 

The frequency of calling poll() on each set is 
different.



Architecture view of event 
dispatching library (FDM)

Active
polling

set

Doze
polling

set

Idle
polling

set

fdm_reg_fd(int fd)

Actual polling set

User space

Kernel space

sys_poll()

Modular Hashing
key = fd,

value=Nth set

fdm_wait_event()

fdm_update_fd_mode(struct
pollfd *fds, void *payload)



Library interface design logic

Reduce copy of FD array
Interesting set are built gradually
Separate routine to fetch event

Reduce linear scan of FD array in server code
Timeout timestamp and payload associated with a 
file descriptor is maintained in this library.

Listening socket descriptor can be locked in 
the active polling set.



Proposed library interface



Performance evaluation
Compare event dispatching mechanisms 
available in Linux 2.4, including our FDM 
library
Test server

dphttpd + event-threading + FDM
All tests are under Multi-accept implementation
Pentium III 600MHZ, 128MB RAM

Test Client
Httperf, HTTP workload generator
three Pentium III 1GHZ, 512MB RAM



Dispatching overhead

Goal
see the overhead under

Large number of idle connections
Request rate is fixed at a pretty light load.



Server reply rate with 
fixed light load

900

920

940

960

980

1000

1020

1040

0 1000 2000 3000 4000 5000 6000

R
ep

ly
 ra

te
 (r

ep
ly

/s
)

Number of idle connections

Reply Rate (1000 req/s, N=3, 1KB reply size)

poll
FDM

RT signals



Server response time with 
fixed light load

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000

R
es

po
ns

e 
tim

e 
(m

s)

Number of idle connections

Response Time (1000 req/s, N=3, 1KB reply size)

poll
FDM

RT signals

FDM polling set maintain overhead
>= polling time saved

FDM is more 
scalable than poll

RT signal
still needs to

maintain 
timeout array



Dispatching Throughput

Goal
See the throughput under

Fixed number of idle connections
Overloaded request rate



Server reply rate with 
1000 idle connections

100Mb Ethernet saturated, poll performs well because of multi-accept

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
ep

ly
 r

at
e 

(r
ep

ly
/s

ec
)

Request rate (req/sec)

Reply Rate (1000 idle connections, N=3, 1KB reply size)

pollFDMRT signals(poll)



Server response time with 
1000 idle connections

Even at light load, we can observe overhead of 1000 idle 
connection. FDM suffers too since it depends on poll()

Difference
Between

FDM
And
poll

0

1

2

3

4

5

6

7

8

9

10

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

po
ns

e 
tim

e 
(m

s)

Request rate (req/sec)

Response Time (1000 idle connections, N=3, 1KB reply size)

pollFDMRT signals(poll)



Server reply rate with 
6000 idle connections

RT signal queue start overflow

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
ep

ly
 r

at
e 

(r
ep

ly
/s

ec
)

Request rate (req/sec)

Reply Rate (6000 idle connections, N=3, 1KB reply size)

pollFDMRT signals(poll)RT signals(select)

RTsig+select
is 

better than
RTsig+poll,

but 
signal queue

overflow
still limit

scalability.



Server response time with 
6000 idle connections

Signal queue overflow, server fall back to poll(), poll overhead
at 6000 idle connections is a lot larger such that this behavior can’t be 

observed at 1000 idle connections.

0

20

40

60

80

100

120

140

160

180

200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

po
ns

e 
tim

e 
(m

s)

Request rate (req/sec)

Response Time (6000 idle connections, N=3, 1KB reply size)

pollFDMRT signals(poll)RT signals(select)



Summary of performance evaluation

At light load
FDM incurs low overhead 

At heavy load 
FDM improves poll()

RT signal queue overflow should be 
protected by select(), not poll()



Conclusion

FDM library improves poll() 
exploiting temporal locality property of events in a 
file descriptor.
Better performance than RT signals if RT signal 
queue overflowed.

RT signal queue overflow recover
select() is a better choice.

Availability of FDM and test web server
http://arch1.cs.ccu.edu.tw/~lhr89/fdm/



Backup slides follow



Keys to scalable event 
dispatching mechanisms 

Interesting set of file descriptors is built 
gradually inside kernel

Separate building of interesting set  from event 
retrieval
Only return a file descriptor if there is a event.

Collect event efficiently
Cache device driver poll result

Don’t run driver’s poll() at every poll()

Or, maintain a event queue and collect events 
gradually at every call to TCP/IP event handler.



Summary of event dispatching 
mechanisms

features

methods

Scalable to 
large set of 
file 
descriptors

Event 
collapsing

Dequeue
multiple 
event per 
system 
call

Event 
queue 
overflow

When 
queue 
overflow, 
kernel 
fallback to 
traditional 
poll()

Return 
initial 
state 
when 
declare 
interest 
fd

Multiple 
interest sets
maintained 
in kernel for 
per process

Select() No NA Yes NA NA NA NA

Poll() No NA Yes NA NA NA NA

/dev/poll Yes NA Yes NA NA NA Yes

RT signals Yes No No Yes No No Yes

RT sig-per-fd Yes Yes No No NA No Yes

Declare_interest Yes Yes Yes Yes Yes Yes No



Polling frequency of a set

Depends on the default value of live counter
Assume default value is N

On every fdm_wait_event() 
Active polling set is polled

On every N fdm_wait_event()
Doze polling set is polled

On every N^2 fdm_wait_event()
Idle polling set is polled



Server performance with different 
default value of live counter

0

100

200

300

400

500

600

1 10 100 1000 10000 100000
0

20

40

60

80

100

120

140

160

180

200

R
ep

ly
 ra

te
 (r

ep
ly

s/
se

c)

R
es

po
ns

e 
tim

e 
(m

s)

Value of live counter (N)

Dispatching throughput and response time (1000 connections, 500 req/s, 1K reply size)

Reply rate
Response time

Small N
Is good Fd in Idle set Fd in doze set

Fd in active set
Large N useless


	A Scalable Event Dispatching Library for Linux Network Servers
	Traditional server:Multiple Process (MP) server
	Modern server:Single Process Event Driven (SPED) server
	Event-driven server architecture
	Problem statement and our goal
	A list of event dispatching mechanisms
	poll() and select()Event dispatching mechanisms in Linux
	Interface of select() and poll()
	Source of overhead on poll()
	Source of overhead on poll()
	POSIX.4 Real Time SignalEvent dispatching mechanisms in Linux
	Flowchart of POSIX.4 Real Time Signal
	Problems in RT signals
	Solution to RT signal queue overflow
	Our solution to reduce poll() overhead: Scalable event dispatching library
	Live counter and polling sets:   Keys to implement locality poll()
	Architecture view of event dispatching library (FDM)
	Library interface design logic
	Proposed library interface
	Performance evaluation
	Dispatching overhead
	Server reply rate with fixed light load
	Server response time with fixed light load
	Dispatching Throughput
	Server reply rate with 1000 idle connections
	Server response time with 1000 idle connections
	Server reply rate with 6000 idle connections
	Server response time with 6000 idle connections
	Summary of performance evaluation
	Conclusion
	Backup slides follow
	Keys to scalable event dispatching mechanisms
	Summary of event dispatching mechanisms
	Polling frequency of a set
	Server performance with different default value of live counter

